Vectors

EXERCISES

ELEMENTRY

Q.1 (4) $\overline{AB} = (6-2)\hat{i} + (-3+9)\hat{j} + (8+4)\hat{k} = 4i + 6j + 12k$ $|\overline{AB}| = \sqrt{16+36+144} = 14.$

Q.2 (1)

 $\begin{vmatrix} 1 & 2 & 3 \\ \lambda & 4 & 7 \\ -3 & -2 & -5 \end{vmatrix} = 0 \Longrightarrow \lambda = 3.$

$$a = 4\hat{i} + 2\hat{j} - 4\hat{k} \implies |a| = \sqrt{16 + 16 + 4} = 6$$

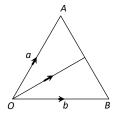
$$b = -3\hat{i} + 2\hat{j} + 12\hat{k} \implies |b| = \sqrt{144 + 4 + 9} = \sqrt{157}$$

$$c = -\hat{i} - 4\hat{j} - 8\hat{k} \implies |c| = \sqrt{64 + 16 + 1} = 9$$

Hence perimeter is $15 + \sqrt{157}$.

Q.4 (4)

Since given that $\overrightarrow{AC} = 3\overrightarrow{AB}$. It means that point divides externally. Thus $\overrightarrow{AC} : \overrightarrow{BC} = 3:2$



Hence
$$\overrightarrow{OC} = \frac{3.b - 2.a}{3 - 2} = 3b - 2a.$$

Q.5 (2)

Let position vector of D is xi + yj + zk, then $\overrightarrow{AB} = \overrightarrow{DC}$

 $\Rightarrow -2\hat{j} - 4\hat{k} = (7 - x)\hat{i} + (7 - y)\hat{j} + (7 - z)\hat{k}$ Hence position vector of will be . $\Rightarrow x = 7, y = 9, z = 11.$

Q.6

(3)

If x be the position vector of B, then a divides AB in the ratio 2:3.

$$\boldsymbol{a} = \frac{2\boldsymbol{x} + 3(\boldsymbol{a} + 2\boldsymbol{b})}{2+3}$$
$$\boldsymbol{5}\boldsymbol{a} - 3\boldsymbol{a} - 6\boldsymbol{b} = 2\boldsymbol{x} \implies \boldsymbol{x} = \boldsymbol{a} - 3\boldsymbol{b}.$$

Q.7 (4)

 $\overrightarrow{AB} = -2\hat{j}, \text{ Here } \overrightarrow{BC} = (a-1)\hat{i} + (b+1)\hat{j} + c\hat{k}$ The points are collinear, then $\overrightarrow{AB} = k(\overrightarrow{BC})$ $-2\hat{j} = \hat{k}\{(a-1)\hat{i} + (b+1)\hat{j} + c\hat{k}\}$

On comparing, k(a-1) = 0, k(b+1) = -2, kc = 0. Hence c = 0, a = 1 and b is arbitrary scalar.

Q.8 (1)

Let $a=x\hat{i}+y\hat{j}+z\hat{k}$. Then $(a.\hat{i})\hat{i}+(a.\hat{j})\hat{j}+(a.\hat{k})\hat{k}=a.$

Q.9 (4)

Let $r = x\hat{i} + y\hat{j} + z\hat{k}$. Since $r.\hat{i} = r.\hat{j} = r.\hat{k} \implies x = y = z$(i) Also $|r| = \sqrt{x^2 + y^2 + z^2} = 3 \implies x = \pm\sqrt{3}$, {By (i)} Hence the required vector $r = \pm\sqrt{3}(\hat{i} + \hat{j} + \hat{k})$. Trick : As the vector $\pm\sqrt{3}(\hat{i} + \hat{j} + \hat{k})$ satisfies both the conditions.

Q.10 (4)

Parallel vector
$$= (2+b)\hat{i} + 6\hat{j} - 2\hat{k}$$

Unit vector $= \frac{(2+b)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{b^2 + 4b + 44}}$
According to the condition, $1 = \frac{(2+b) + 6 - 2}{\sqrt{b^2 + 4b + 44}}$
 $\Rightarrow b^2 + 4b + 44 = b^2 + 12b + 36 \Rightarrow 8b = 8 \Rightarrow b = 1.$

Q.11 (1)

$$(a + b + c)^{2} = 0$$

$$\Rightarrow |a|^{2} + |b|^{2} + |c|^{2} + 2a.b + 2b.c + 2c.a = 0$$

$$\Rightarrow 9 + 1 + 16 + 2(a.b + b.c + c.a) = 0$$

$$\Rightarrow a.b + b.c + c.a = -\frac{26}{2} = -13.$$

Q.12

(2)

$$\cos \theta = \frac{3(2) + (1)(-2) + 2(4)}{\sqrt{9 + 1 + 4}\sqrt{4 + 4 + 16}} = \frac{12}{\sqrt{14}\sqrt{24}} = \frac{6}{\sqrt{14}\sqrt{6}}$$
$$\Rightarrow \cos \theta = \frac{\sqrt{3}}{\sqrt{7}} \Rightarrow \sin \theta = \frac{2}{\sqrt{7}} \Rightarrow \theta = \sin^{-1}\left(\frac{2}{\sqrt{7}}\right)$$

(2)
(a + 2b).(5a - 4b) = 0
or 5a² + 6a.b - 8b² = 0
or 6a.b = 3, (:: a² = 1, b² = 1)
:: a.b =
$$\frac{1}{2}$$
 or $|a||b| \cos \theta = \frac{1}{2}$
:: $\cos \theta = \frac{1}{2}$, :: $\theta = 60^{\circ}$.

$$a.b = (2 - 4 - \lambda) = 0 \Longrightarrow \lambda = -2.$$

Q.15 (1)

Projection of
$$x\hat{i} - \hat{j} + \hat{k}$$
 on $2\hat{i} - \hat{j} + 5\hat{k}$

$$= \frac{(x\hat{i} - \hat{j} + \hat{k})(2\hat{i} - \hat{j} + 5\hat{k})}{\sqrt{4 + 1 + 25}} = \frac{2x + 1 + 5}{\sqrt{30}}$$
But, given $\frac{2x + 6}{\sqrt{30}} = \frac{1}{\sqrt{30}}$

$$\Rightarrow 2x + 6 = 1 \Rightarrow x = \frac{-5}{2}$$

Q.16 (1)

$$a = \hat{i} + \hat{j} - 3\hat{k}, \quad b = -2\hat{i} + 2\hat{j} + 2\hat{k}$$
$$a \times b = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -3 \\ -2 & 2 & 2 \end{vmatrix} = 8\hat{i} + 4\hat{j} + 4\hat{k}$$
Hence unit vector
$$= \pm \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}$$

Q.17 (2)

$$\begin{aligned} |a \times \hat{i}|^{2} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ 1 & 0 & 0 \end{vmatrix}^{2}, (\text{Since } a = a_{1}\hat{i} + a_{2}\hat{j} + a_{3}\hat{k}) \\ &= |a_{3}\hat{j} - a_{2}\hat{k}|^{2} = a_{3}^{2} + a_{2}^{2} \\ \text{Similarly, } |a \times \hat{j}|^{2} = a_{1}^{2} + a_{3}^{2} \text{ and } |a \times \hat{k}|^{2} = a_{1}^{2} + a_{2}^{2} \\ \text{Hence the required result can be given as} \\ &2(a_{1}^{2} + a_{2}^{2} + a_{3}^{2}) = 2 |a|^{2}. \end{aligned}$$

Q.18 (3)
We know that
$$(a \times b)^2 + (a \cdot b)^2 = |a|^2 |b|^2$$

 $\therefore 144 = 16 |b|^2 \Rightarrow |b| = 3.$

Q.19 (2)

$$(a \times b)^{2} = (|a||b|\sin\theta)^{2}$$

= $(4.2\sin 30^{\circ})^{2} = \left(8.\frac{1}{2}\right)^{2} = 4^{2} = 16$

Q.20 (2)

If angle between b and c is α and $|b \times c| = \sqrt{15}$

$$|\mathbf{b}| |\mathbf{c}| \sin \alpha = \sqrt{15}$$

$$\sin \alpha = \frac{\sqrt{15}}{4} ; \therefore \cos \alpha = \frac{1}{4}$$

$$\mathbf{b} - 2\mathbf{c} = \lambda \mathbf{a} \Rightarrow |\mathbf{b} - 2\mathbf{c}|^2 = \lambda^2 |\mathbf{a}|^2$$

$$|\mathbf{b}|^2 + 4|\mathbf{c}|^2 - 4.\mathbf{b}.\mathbf{c} = \lambda^2 |\mathbf{a}|^2$$

$$16 + 4 - 4\{|\mathbf{b}||\mathbf{c}|\cos\alpha\} = \lambda^2$$

$$16 + 4 - 4 \times 4 \times 1 \times \frac{1}{4} = \lambda^2 \Rightarrow \lambda^2 = 16 \Rightarrow \lambda = \pm 4$$

Q.21 (3)

$$\Delta = \frac{1}{2} |\mathbf{a} \times \mathbf{b}| = \frac{1}{2} \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & 2 & -1 \\ 1 & 3 & 1 \end{vmatrix} = \frac{1}{2} |(5\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 7\hat{\mathbf{k}})|$$
$$\Delta = \frac{1}{2}\sqrt{25 + 16 + 49} = \frac{1}{2}\sqrt{90} = \frac{3}{2}\sqrt{10}.$$

Q.22 (3)
$$a(b \times a) =$$

Q.23

 $a.(b \times c) = 0 \text{ or } (a \times b).c = 0.$

(1) L e t $a = 3\hat{i} - 2\hat{j} - \hat{k}$, $b = 2\hat{i} + 3\hat{j} - 4\hat{k}$, $c = -\hat{i} + \hat{j} + 2\hat{k}$ and $d = 4\hat{i} + 5\hat{j} + \lambda\hat{k}$. Since the points are coplanar, So, [dbc] + [dca] + [dab] = [abc]

$$\Rightarrow \begin{vmatrix} 4 & 5 & \lambda \\ 2 & 3 & -4 \\ -1 & 1 & 2 \end{vmatrix} + \begin{vmatrix} 4 & 5 & \lambda \\ -1 & 1 & 2 \\ 3 & -2 & -1 \end{vmatrix} + \begin{vmatrix} 4 & 5 & \lambda \\ 3 & -2 & -1 \\ 2 & 3 & -4 \end{vmatrix}$$
$$= \begin{vmatrix} 3 & -2 & -1 \\ 2 & 3 & -4 \\ -1 & 1 & 2 \end{vmatrix}$$

$$\Rightarrow 40 + 5\lambda + 37 - \lambda + 94 + 13\lambda = 25 \Rightarrow \lambda = \frac{-140}{17}.$$

Q.24 (4)

Volume of cube =[abc]

$$= \begin{vmatrix} 12 & 4 & 3 \\ 8 & -12 & -9 \\ 33 & -4 & -24 \end{vmatrix} = 12 \begin{vmatrix} 12 & 1 & 1 \\ 8 & -3 & -3 \\ 33 & -1 & -8 \end{vmatrix} = 3696.$$

$$\hat{\mathbf{i}} \cdot (\hat{\mathbf{j}} \times \hat{\mathbf{k}}) + \hat{\mathbf{j}} \cdot (\hat{\mathbf{k}} \times \hat{\mathbf{i}}) + \hat{\mathbf{k}} \cdot (\hat{\mathbf{i}} \times \hat{\mathbf{j}}) = \hat{\mathbf{i}} \cdot \hat{\mathbf{i}} + \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} + \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 3.$$

Q.26 (2)

Vectors $i + 3\hat{j} - 2\hat{k}$; $2\hat{i} - \hat{j} + 4\hat{k}$ and $3\hat{i} + 2\hat{j} + x\hat{k}$. We know that as the vectors are coplanar, therefore

$$\begin{vmatrix} 1 & 3-2 \\ 2-1 & 4 \\ 3 & 2 & x \end{vmatrix} = 0$$

$$\Rightarrow 1(-x-8) - 3(2x-12) - 2(4+3) = 0$$

$$\Rightarrow -x-8 - 6x + 36 - 14 = 0 \Rightarrow 7x = 14 \Rightarrow x = 2$$

Q.27 (1)

$$[a \times b \ b \times c \ c \times a] = (a \times b).[(b \times c) \times (c \times a)]$$

= (a \times b).([bca]c - [bcc]a) = (a \times b).([bca]c - 0)
= [bca][abc] = [abc][abc] = 4.4 = 16.

Q.28 (3)

Let four points A,B,C,D represent the given points So, $\overrightarrow{AB} = -\hat{i} - \hat{j} + 4\hat{k}$, $\overrightarrow{BC} = 2\hat{i} + 2\hat{j} - 5\hat{k}$, $\overrightarrow{CD} = -2\hat{i} - (\lambda + 4)\hat{j} + 3\hat{k}$ From the condition, $[\overrightarrow{AB} \ \overrightarrow{BC} \ \overrightarrow{CD}] = 0$

$$\Rightarrow \begin{vmatrix} -1 & -1 & 4\\ 2 & 2 & -5\\ -2 & -(\lambda+4) & 3 \end{vmatrix} = 0$$

$$\Rightarrow -1[2.3 - 5(\lambda+4)] + 1[6 - 10] + 4[-2(\lambda+4) + 4] = 0$$

$$\Rightarrow \lambda = -2$$

Q.29 (1)

 $b \times c$ is a vector perpendicular to b,c. Therefore, $a \times (b \times c)$ is a vector again in plane of b,c.

Q.30 (3)
Let
$$a = x\hat{i} + y\hat{j} + z\hat{k}$$

 $\hat{i} \times (a \times \hat{i}) + \hat{j} \times (a \times \hat{j}) + \hat{k} \times (a \times \hat{k})$
 $= (\hat{i}.\hat{i})a - \hat{i}(a.\hat{i}) + (\hat{j}.\hat{j})a - \hat{j}(a.\hat{j}) + (\hat{k}.\hat{k})a - \hat{k}(a.\hat{k})$
 $= 3a - a = 2a.$

Q.31 (1) $(a \times b) \times c = (a.c)b - (b.c)a$ $= (3 + 2 + 4)(2\hat{i} + \hat{j} - \hat{k}) - (2 - 2 - 2)(3\hat{i} - \hat{j} + 2\hat{k})$ $= 18\hat{i} + 9\hat{j} - 9\hat{k} + 6\hat{i} - 2\hat{j} + 4\hat{k} = 24\hat{i} + 7\hat{j} - 5\hat{k}$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & -3 \\ 2 & 1 & -1 \end{vmatrix} = \hat{i}(2+3) - \hat{j}(-1+6) + \hat{k}(1+4)$$
$$= 5\hat{i} - 5\hat{j} + 5\hat{k}$$
Now $(\vec{A} \times \vec{B}) \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & k \\ 5 & -5 & 5 \\ 1 & 3 & -2 \end{vmatrix}$
$$= \hat{i}(10-15) - \hat{j}(-10-5) + \hat{k}(15+5)$$
$$= -5\hat{i} + 15\hat{j} + 20\hat{k} = 5(-\hat{i} + 3\hat{j} + 4\hat{k})$$

Q.33 (4)

Required distance

$$= \left| \frac{d - a.n}{|n|} \right| = \left| \frac{5 - (2\hat{i} - 2\hat{j} + 3\hat{k}).(\hat{i} + 5\hat{j} + \hat{k})}{\sqrt{1 + 25 + 1}} \right|$$
$$= \left| \frac{5 - (2 - 10 + 3)}{\sqrt{27}} \right| = \frac{10}{3\sqrt{3}}$$

Q.34 (1)

Let the equation of plane is

$$a(x+1) + b(y+2) + c(z-0) = 0$$
(i)
As it passes through (2, 3, 5)
so, $3a + 5b + 5c = 0$ (ii)
also, $2a + 5b - c = 0$ (iii)
 $\therefore \frac{a}{-5-25} = \frac{b}{10+3} = \frac{c}{15-10}$
 $\therefore \frac{a}{-30} = \frac{b}{13} = \frac{c}{5}$
Hence equation of plane is, $-30x + 13y + 5z = 4$

or $r.(-30\hat{i}+13\hat{j}+5\hat{k}) = 4$

Q.35 (2)

The line of intersection of the planes $r.(\hat{i} - 3\hat{j} + \hat{k}) = 1$ and $r.(2\hat{i} + 5\hat{j} - 3\hat{k}) = 2$ is perpendicular to each of the normal vectors $n_1 = \hat{i} - 3\hat{j} + \hat{k}$ and $n_2 = 2\hat{i} + 5\hat{j} - 3\hat{k}$ \therefore It is parallel to the vector $n_1 \times n_2 = (\hat{i} - 3\hat{j} + \hat{k}) \times (2\hat{i} + 5\hat{j} - 3\hat{k})$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 2 & 5 & -3 \end{vmatrix} = 4i + 5j + 11k$$

Q.36 (2)

Here d = 8 and n = $2\hat{i} + \hat{j} + 2\hat{k}$)

$$\therefore \ \hat{n} = \frac{n}{|n|} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{4 + 1 + 4}} = \frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}$$

Hence, the required equation of the plane is

$$r.\left(\frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}\right) = 8$$
 or $r.(2\hat{i} + \hat{j} + 2\hat{k}) = 24$

Q.37 (3)

The given lines are $r = a_1 + \lambda b_1$, $r = a_2 + \mu b_2$

where
$$a_1 = 3\hat{i} - 2\hat{j} - 2\hat{k}$$
, $b_1 = i$
 $a_2 = \hat{i} - \hat{j} + 2\hat{k}$, $b_2 = \hat{j}$
 $|b_1 \times b_2| = |\hat{i} \times \hat{j}| = |\hat{k}| = 1$
Now, $[(a_2 - a_1) \ b_1 \ b_2] = (a_2 - a_1).(b_1 \times b_2)$
 $= (-2\hat{i} + \hat{j} + 4\hat{k})(\hat{k}) = 4$
 \therefore Shortest distance
 $= \frac{[(a_2 - a_1)(b_1 - b_2)]}{|b_1 \times b_2|} = \frac{4}{1} = 4$.

Q.38 (2)

The equation of a plane parallel to the plane

r. $(4\hat{i}-12\hat{j}-3\hat{k})-7=0$ is r. $(4\hat{i}-12\hat{j}-3\hat{k})+\lambda=0$ This passes through $2\hat{i}-\hat{j}-4\hat{k}$ Therefore, $(2\hat{i}-\hat{j}-4\hat{k}).(4\hat{i}-12\hat{j}-3\hat{k})+\lambda=0$ $\Rightarrow 8+12+12+\lambda=0 \Rightarrow \lambda=-32$ So, the required plane is r. $(4\hat{i}-12\hat{j}-3\hat{k})-32=0$

Q.39 (1)

The vector equation of a plane through the line of intersection of the planes $r.(\hat{i} + 3\hat{j} - \hat{k}) = 0$ and $r.(\hat{j} + 2\hat{k}) = 0$ can be written as $(r.(\hat{i} + 3\hat{j} - \hat{k})) + \lambda(r.(\hat{j} + 2\hat{k})) = 0$ (i) This passes through $2\hat{i} + \hat{j} - \hat{k}$ $\therefore (2\hat{i} + \hat{j} - \hat{k}).(\hat{i} + 3\hat{j} - \hat{k}) + \lambda(2\hat{i} + \hat{j} - \hat{k}).(\hat{j} + 2\hat{k}) = 0$

or $(2+3+1) + \lambda(0+1-2) = 0 \Longrightarrow \lambda = 6$

Put the value of λ in (i) we get

 $r.(\hat{i}+9\hat{j}+11\hat{k})=0$ which is the required plane.

Q.40 (2)

The equation of a line passing through the points $A(\hat{i} - \hat{i} + 2\hat{k})$ and $B(3\hat{i} + \hat{i} + \hat{k})$ is

$$A(1-j+2k)$$
 and $B(3i+j+k)$ 1

$$\mathbf{r} = (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + \lambda(3\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$$

The position vector of any point P which is a variable point on the line, is

$$(\hat{i} - \hat{j} + 2\hat{k}) + \lambda(3\hat{i} + \hat{j} + \hat{k})$$

$$\overrightarrow{AP} = \lambda(3\hat{i} + \hat{j} + \hat{k}) \Longrightarrow |\overrightarrow{AP}| = \lambda\sqrt{11}$$

Now, if $\lambda \sqrt{11} = 3\sqrt{11}$ i.e., $\lambda = 3$ then the position

vector of the point P is $10\hat{i} + 2\hat{j} + 5\hat{k}$.

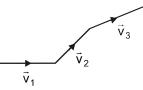
If $\lambda \sqrt{11} = -3\sqrt{11}$, i.e., $\lambda = -3$ then the position

vector of the point P is $-8\hat{i} - 4\hat{j} - \hat{k}$.

JEE-MAIN

OBJECTIVE QUESTIONS

- **Q.1** (2)
 - Clearly triangle is not possible as $v_1 + v_2 + v_3 \neq 0$



Since $\vec{v}_3 = \vec{v}_1 + \vec{v}_2$ Hence \vec{v}_1 , \vec{v}_2 , \vec{v}_3 are coplaner

These forces can be written in terms of vector as

kî,
$$\frac{k}{\sqrt{2}}\hat{i} + \frac{k}{\sqrt{2}}\hat{j}$$
, k \hat{j} and $-\frac{k}{\sqrt{2}}\hat{i} + \frac{k}{\sqrt{2}}\hat{j}$
 k

Resultant = $k\hat{i} + (k + \sqrt{2}k)\hat{j}$ magnitude = $\sqrt{k^2 + (k + \sqrt{2}k)^2} = k\sqrt{4 + 2\sqrt{2}}$

Q.3 (2)

Before rotation $\vec{a} = 2p\hat{i} + \hat{j}$ after rotation $\vec{a} = (p+1)\hat{i}' + \hat{j}'$ Since length of vector remains unaltered $\sqrt{4p^2 + 1} = \sqrt{(p+1)^2 + 1}$

$$\Rightarrow 4p^{2} = (p+1)^{2} \Rightarrow p+1 = \pm 2p$$

$$\Rightarrow p = 1 \text{ or } -\frac{1}{3}$$

Q.4 (3)

$$\vec{a} = (2\sqrt{2}, -1, 4) | \vec{b} | = 10$$

$$\vec{b} = \lambda \vec{a}$$

$$| \vec{b} |^{2} = \lambda^{2} | \vec{a} |^{2}$$

$$100 = \lambda^{2} (8 + 1 + 16)$$

$$\lambda^{2} = 4 \Rightarrow \lambda = \pm 2$$

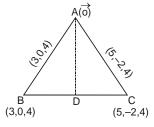
$$2\vec{a} + \vec{b} = 0$$

Q.5 (4)

$$\overline{AB} = -6 \hat{i} - 10 \hat{j} + 3\hat{k}$$
$$\overline{AD} = -2 \hat{i} - 5 \hat{j} - 2\hat{k}$$
$$\overline{AB} \cdot \overline{AD} \neq 0$$

so not a square or rectangle $\left|\overline{AB}\right| \neq \left|\overline{AD}\right|$ so not a rhombus.

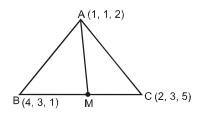
 $\overrightarrow{\mathsf{AB}} = (3, 0, 4)$ $\overrightarrow{\mathsf{AC}} = (5, -2, 4)$



Let \vec{A} be origin. D is the mid point of BC D(4, -1, 4) $\vec{AD} = (4, -1, 4)$ $|\vec{AD}| = \sqrt{16 + 1 + 16} = \sqrt{33}$

Q.7

(4)



$$AB = \sqrt{9+4+1} = \sqrt{14}$$
$$AC = \sqrt{1+4+9} = \sqrt{14}$$
$$M \equiv (3, 3, 3)$$
$$\overrightarrow{AM} = 2\hat{i} + 2\hat{i} + \hat{k}$$

(4)

$$\vec{a}.(\vec{b} + \vec{c}) = 0 \qquad \dots(i)$$

$$\vec{b}.(\vec{c} + \vec{a}) = 0 \qquad \dots(ii)$$

$$\vec{c}.(\vec{a} + \vec{b}) = 0 \qquad \dots(iii)$$

Add all equation $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} = 0$
$$|\vec{a} + \vec{b} + \vec{c}| = \sqrt{|a|^2 + |b|^2 + |c|^2 + 0}$$

$$= \sqrt{9 + 16 + 25} = 5\sqrt{2}$$

Q.9

(4)

$$\vec{A}$$
 (2, -1, -1), \vec{B} = (1, -3, -5),
 \vec{C} = (a, -3, -1)
 \vec{AC} . \vec{CB} = 0 \Rightarrow (a - 2, -2, 0). (a - 1, 0, 4) = 0
(a - 1) (a = 2) = 0 \Rightarrow a = 1 and 2

Q.10 (1)

 $\vec{F}_1 = (4, 1, -3) \vec{F}_2 = (3, 1, -1)$ $d\vec{s} = (5, 4, 1) - (1, 2, 3) = (4, 2, -2)$ work done = $\vec{F}_1 \cdot d\vec{s} + \vec{F}_2 \cdot d\vec{s} = 24 + 16 = 40$

- Q.11 (3) $\vec{a} = \hat{i} - \hat{j}, \ \vec{b} = \hat{i} + \hat{j}, \ \vec{c} = \hat{i} + 3\hat{j} + 5\hat{k} \ \Rightarrow \ \vec{n} = \hat{k} \ \Rightarrow$ $|\vec{c}.\vec{n}| = 5$
- **Q.12** (2) $|\vec{a} - \vec{b}| = 8 \implies |a|^2 + |b|^2 - 2\vec{a}\cdot\vec{b} = 64$...(i)

$$|\vec{a}+\vec{b}|=10 \Rightarrow |a|^2 + |b|^2 + 2\vec{a}.\vec{b} = 100$$
 ...(ii)
Add (i) and (ii) equation
 $2|a|^2 + 2|b|^2 = 164$
 $|b|^2 = 82 - 25$
 $|b| = \sqrt{57}$

Q.13 (1) Diagonals are $\vec{a} + \vec{b} = (3, 0, 0)$ and $\vec{a} - \vec{b} = (1, 2, 2)$

$$\cos \theta = \frac{(\vec{a} + \vec{b}).(\vec{a} - \vec{b})}{|\vec{a} + \vec{b}| |\vec{a} - \vec{b}|} = \frac{3}{3.3} = \frac{1}{3}$$
$$\theta = \cos^{-1}\left(\frac{1}{3}\right)$$

$$|\vec{u}| = 1; |\vec{v}| = 1$$
$$|2\vec{u} \times 3\vec{v}| = 1$$
$$|\vec{u} \times \vec{v}| = \frac{1}{6}$$
$$|u| |v| \sin \theta = \frac{1}{6} = \boxed{\sin \theta = \frac{1}{6}}$$

As $\boldsymbol{\theta}$ is acute angle than only one value possible

Q.15 (2)

$$\vec{u} = \vec{a} - \vec{b}, \ \vec{v} = \vec{a} + \vec{b}, \ |\vec{a}| = |\vec{b}| = 2$$

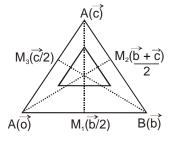
$$|\vec{u} \times \vec{v}| = |(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})|$$

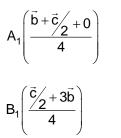
$$= |(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})|$$

$$= 2 |\vec{a} \times \vec{b}| = 2 |\vec{a}| |\vec{b}| \sin \theta$$

$$= 2 |\vec{a}| |\vec{b}| \sqrt{\frac{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2}{|\vec{a}| |\vec{b}|}} = 2 \sqrt{16 - (\vec{a} \cdot \vec{b})^2}$$

Q.16 (2)



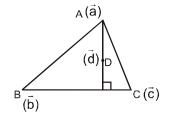


Area of
$$\Delta A_1 B_1 C_1 = \frac{1}{2} | \overrightarrow{A_1 B_1} \times \overrightarrow{A_1 C_1} |$$

Area of $\Delta ABC = \frac{1}{2} | \overrightarrow{b} \times \overrightarrow{c} |$
Ratio = $\frac{\text{Area of } \Delta A_1 B_1 C_1}{\text{Area of } \Delta ABC} = \frac{25}{64}$.

Q.17 (3) Given $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$

$$\Rightarrow \overrightarrow{\mathsf{DA}}.\overrightarrow{\mathsf{CB}} = 0 \quad \& \quad \overrightarrow{\mathsf{DB}}.\overrightarrow{\mathsf{AC}} = 0$$



 $AD \perp BC \& BD \perp AC$ Hence D is orthocentre.

Q.18 (2)

A vector normal to plane is $(\vec{a} - \vec{b}) \times (\vec{c} - \vec{b})$ = $\vec{a} \times \vec{c} - \vec{a} \times \vec{b} - \vec{b} \times \vec{c} = -(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})$ unit vector = $\pm \frac{(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})}{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}$

$$\begin{aligned} |\vec{\mathbf{e}}_{1} - \vec{\mathbf{e}}_{2}|^{2} < 1 \implies \vec{\mathbf{e}}_{1}^{2} + \vec{\mathbf{e}}_{2}^{2} - 2\vec{\mathbf{e}}_{1} \cdot \vec{\mathbf{e}}_{2} < 1 \\ \implies 1 + 1 - 2\cos(2\theta) < 1 \\ \implies 2\cos(2\theta) > 1 \implies \cos(2\theta) > \frac{1}{2} \\ 2\theta \in \left[0, \frac{\pi}{3}\right] \implies \theta \in \left[0, \frac{\pi}{6}\right] \\ \mathbf{Q.20} \quad (4) \\ \vec{\mathbf{a}} = (1, \mathbf{x}, 3) \qquad \cos\theta = \frac{11}{14} \\ \vec{\mathbf{b}} = (4, 4\mathbf{x} - 2, 2) \\ \cos\theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}} ||\vec{\mathbf{b}}|} \qquad |\vec{\mathbf{b}}| = 2 |\vec{\mathbf{a}}| \end{aligned}$$

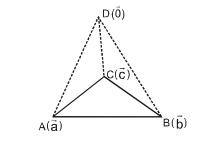
 $\frac{11}{14} = \frac{4 + x(4x - 2) + 6}{2|a|^2} \Rightarrow x = 2 \text{ and } x = -\frac{20}{17}.$

(2) $\vec{a} = (-2, 1, 1), \ \vec{b} = (1, 5, 0), \ \vec{c} = (4, 4, -2)$ $\vec{d} = 3\vec{a} - 2\vec{b}$ = 3(-2, 1, 1) - 2(1, 5, 0)= (-6, 3, 3) - 2(2, 10, 0) = (-8, -7, 3)Projection = $|\vec{d}|\cos\theta$ $= |\vec{d}| \frac{\vec{d}.\vec{c}}{|\vec{d}||\vec{c}|} = \frac{\vec{d}.\vec{c}}{|\vec{c}|} = \frac{-31 - 28 - 6}{\sqrt{16 + 16 + 4}} = \frac{-66}{6} = -$ 11.

Q.22 (1)

Q.21

$$\vec{a}_1 = \overrightarrow{AC} \times \overrightarrow{AB} = (\vec{c} - \vec{a}) \times (\vec{b} - \vec{a})$$
$$\vec{a}_2 = \overrightarrow{DB} \times \overrightarrow{DC} = \vec{b} \times \vec{c}$$



$$\vec{a}_3 = \vec{DC} \times \vec{DA} = \vec{c} \times \vec{a}$$

 $\vec{a}_4 = \vec{DA} \times \vec{DB} = \vec{a} \times \vec{b}$

Q.23 (4)

$$\vec{a}.\vec{b} = 0 \implies x - y + 2 = 0 \quad \dots (1)$$
$$\vec{a}.\vec{c} = 4 \implies x + 2y = 4 \quad \dots (2)$$
$$\implies x = 0, \quad y = 2$$
Hence $\vec{a} = 2\hat{j} + 2\hat{k}$
$$[\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} 0 & 2 & 2 \\ 1 & -1 & 1 \\ 1 & 2 & 0 \end{vmatrix} = 8 = |\vec{a}|^2$$

Q.24 (4)

$$\vec{a} = (1, 1, 1)$$

 $\vec{b} = (1, 1, 1)$
 $\vec{c} = (2, -3, 0)$
 $\vec{v} = \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})c = (-7, 8, -1)$
 $\vec{v} = \frac{(-7, 8, -1)}{\sqrt{114}}$
Reqd. Vector $= \frac{3}{\sqrt{114}} (-7\hat{i} + 8\hat{j} - \hat{k})$

$$(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}||\vec{c}|\vec{a}$$

$$(\vec{a}.\vec{c})\vec{b} - (\vec{b}.\vec{c})\vec{a} = \frac{1}{3} |\vec{b}||\vec{c}|\vec{a}$$

$$\cos \theta = -\frac{1}{3} \Rightarrow \sin \theta = \frac{2\sqrt{2}}{3}$$

$$Q.26 \quad (4)$$

$$\vec{a} \times (2\vec{b} \times \vec{c}) = \vec{b} \Rightarrow 2\left[(\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}\right] = \vec{b}$$

$$\Rightarrow \vec{a}.\vec{c} = \frac{1}{2} \quad \& \vec{a}.\vec{b} = 0$$

$$Q.27 \quad (1)$$

$$\vec{a} \parallel (\vec{b} \times \vec{c}) \Rightarrow \qquad \vec{a} = \lambda(\vec{b} \times \vec{c})$$

$$also \ (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c}) = \begin{vmatrix} \vec{a}.\vec{a} & \vec{a}.\vec{c} \\ \vec{b}.\vec{a} & \vec{b}.\vec{c} \end{vmatrix} = \begin{vmatrix} \vec{a}.\vec{a} & 0 \\ 0 & \vec{b}.\vec{c} \end{vmatrix}$$

$$Q.28 \quad (3)$$

$$[(\vec{a} + 2\vec{b} - \vec{c}), (\vec{a} - \vec{b}), (\vec{a} - \vec{b} - \vec{c})]$$

(D)

Q.25

$$(\vec{a} + 2\vec{b} - \vec{c}) \cdot [(\vec{a} - \vec{b}) \times (\vec{a} - \vec{b} - \vec{c})]$$

$$(\vec{a} + 2\vec{b} - \vec{c}) \cdot [(\vec{b} - \vec{a}) \times \vec{c}]$$

$$(\vec{a} + 2\vec{b} - \vec{c}) \cdot [\vec{b} \times \vec{a} - \vec{a} \times \vec{c}]$$

$$= [\vec{a} \quad \vec{b} \quad \vec{c}] - 0 + 0 + 2[\vec{a} \quad \vec{b} \quad \vec{c}] - 0 + 0$$

$$3[\vec{a} \quad \vec{b} \quad \vec{c}]$$

Q.29 (3)
$$\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0$$

$$\Rightarrow \ell[\vec{a} \ \vec{b} \ \vec{c}] + m[\vec{a} \ \vec{b} \ \vec{c}] + n[\vec{a} \ \vec{b} \ \vec{c}] = 0$$

or $(\ell + m + n) \ [\vec{a} \ \vec{b} \ \vec{c}] = 0$
or $\ell + m + n = 0$

Q.30 (3)

Altitude from D =
$$\frac{\text{Volume of Tetrahedron}}{\text{Area of Face ABC}}$$

= $\frac{[\overrightarrow{AD} \quad \overrightarrow{AC} \quad \overrightarrow{AB}]}{\frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |} = 11$

Vectors
Q.31 (1)

$$V_{Old} = [\vec{a} \ \vec{b} \ \vec{c}]$$

$$V_{New} = [\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]$$

$$V_{New} = [\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]$$

$$so m = 2$$
Q.32 (3)

$$\begin{bmatrix} \vec{a} \cdot \vec{a} \ \vec{a} \cdot \vec{b} \ \vec{b} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} \ \vec{b} \cdot \vec{b} \ \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} \ \vec{c} \cdot \vec{b} \ \vec{c} \cdot \vec{c} \end{bmatrix} = [\vec{a} \ \vec{b} \ \vec{c}]^2 = 4^2 = 16$$
Q.33 (3)

$$\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{a} \end{bmatrix} < 0$$

$$\begin{bmatrix} 2 \ 2x \ 1 \\ 1 \ 0 \ 1 \\ x \ 12 \ -1 \end{bmatrix}$$

$$2(0 - 12) - 2x (-1 - x) + 1 (12) < 0$$
or $-24 + 2x + 2x^2 + 12 < 0$

$$\Rightarrow x^2 + x - 6 < 0$$

$$\Rightarrow x \in (-3, 2)$$
Q.34 (3)

$$\vec{a}, \vec{b}, \vec{c} \text{ are non-coplaner} \Rightarrow \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \neq 0$$
$$\begin{bmatrix} \vec{a} + 2\vec{b} + 3\vec{c} & \lambda\vec{b} + 4\vec{c} & (2\lambda - 1)\vec{c} \end{bmatrix}$$
$$= (\vec{a} + 2\vec{b} + 3\vec{c}) \cdot [(\lambda\vec{b} + 4\vec{c}) \times (2\lambda - 1)\vec{c}]$$
$$= \lambda (2\lambda - 1) (\vec{a} + 2\vec{b} + 3\vec{c}) \cdot (\vec{b} \times \vec{c})$$
$$= \lambda (2\lambda - 1) \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

Q.35 (2)

$$\begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \neq 0$$

$$(\vec{u} + \vec{v} - \vec{w}) \cdot [(\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})]$$

$$(\vec{u} + \vec{p}) \cdot [(\vec{u} - \vec{v}) \times \vec{p}]$$

$$(\vec{u} + \vec{p}) \cdot [\vec{u} \times \vec{p} - \vec{v} \times \vec{p}]$$

$$= -\vec{u} \cdot (\vec{v} \times \vec{p}) = -\vec{u} \cdot (\vec{v} \times (\vec{v} - \vec{w}))$$

 $= \vec{u} \cdot (\vec{v} \times \vec{w})$

Q.36 (3)

Given
$$\vec{c}.\vec{a} = 0$$
 & $\vec{c}.\vec{b} = 0 = \begin{bmatrix} \vec{a}.\vec{a} & \vec{a}.\vec{b} & \vec{a}.\vec{c} \\ \vec{b}.\vec{a} & \vec{b}.\vec{b} & \vec{b}.\vec{c} \\ \vec{c}.\vec{a} & \vec{c}.\vec{b} & \vec{c}.\vec{c} \end{bmatrix}$

$$= \begin{vmatrix} |a|^{2} & |a||b|\cos\frac{\pi}{6} & 0 \\ |a||b|\cos\frac{\pi}{6} & |b|^{2} & 0 \\ 0 & 0 & |c|^{2} \end{vmatrix}$$

$$= |c|^{2} [|a|^{2} + |b|^{2} - |a|^{2} |b|^{2} \cos^{2} \frac{\pi}{6}]$$
$$= |c|^{2} |a|^{2} |b|^{2} \left[1 - \frac{3}{4}\right] = \frac{1}{4} |c|^{2} |a|^{2} |b|^{2}$$
$$= \frac{1}{4} (a_{1}^{2} + a_{2}^{2} + a_{3}^{2}) (b_{1}^{2} + b_{2}^{2} + b_{3}^{2})$$

Q.37 (3)

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2 = \begin{vmatrix} \vec{a} . \vec{a} & \vec{a} . \vec{b} & \vec{a} . \vec{c} \\ \vec{b} . \vec{a} & \vec{b} . \vec{b} & \vec{b} . \vec{c} \\ \vec{c} . \vec{a} & \vec{c} . \vec{b} & \vec{c} . \vec{c} \end{vmatrix}$$
$$= \begin{vmatrix} 1 & \cos \theta & \cos \theta \\ \cos \theta & 1 & \cos \theta \\ \cos \theta & \cos \theta & 1 \end{vmatrix}$$
$$Q.38 \quad (1)$$
$$Assume \ \vec{b} = \hat{i}, \ \vec{c} = \hat{j} \text{ and } \vec{a} = \hat{i} + \hat{j} + \hat{k}$$
$$\vec{a} . \vec{b} = 1, \ \vec{a} . \vec{c} = 1$$
$$\vec{b} + \vec{c} + \vec{k} = \hat{i} + \hat{j} + \hat{k} = \vec{a}.$$

Q.39 (1)

> | m $m+1 \quad m+8 \\$ m+3 m+4 m+5 m+6 m+7 m+8

10

$$\begin{aligned} R_1 &\to R_2 - R_1 \\ R_2 &\to R_2 - R_3 \end{aligned}$$

$$= \begin{vmatrix} 3 & 3 & -3 \\ -3 & -3 & -3 \\ m+6 & m+7 & m+8 \end{vmatrix}$$

$$= -9 \begin{vmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ m+6 & m+7 & m+8 \end{vmatrix}$$

$$= -9[m+8 - m-7] - 1[m+8 - m-6] - 1[m+7 - m-6]$$

$$= -9 - 2 - 1 = -12.$$

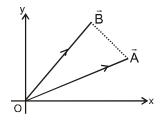
$$\vec{a} = \hat{i} + \hat{j} \qquad \vec{b} = 2\hat{i} - \hat{k}$$

$$\vec{r} \times \vec{a} = \vec{b} \times \vec{a} \qquad \dots \dots (i)$$

$$\vec{r} \times \vec{b} = \vec{a} \times \vec{b} \qquad \dots \dots (ii)$$

Add (i) & (ii)

$$\vec{r} \times (\vec{a} \times \vec{b}) = 0 \implies \vec{r} = (\vec{a} + \vec{b}) = (3, 1, -1)$$



 $\overrightarrow{OA} \times \overrightarrow{OB} = a$ fixed vector $\Rightarrow |\overrightarrow{OA} \times \overrightarrow{OB}| = \text{const. number}$ $\Rightarrow \Delta OAB = const.$ \Rightarrow B is on the line || to base OA

Q.42 (3)

Let D is of c on line

$$AC = \sqrt{(1)^{2} + (-2)^{2} + (1)^{2}}$$

$$AD = \text{proj. of AC on AD}$$

$$= \frac{1(6) + (-2)(-3) + 1(2)}{7}$$

$$AD = 2$$
So shortest distance $(CD)^{2} = (AC)^{2}$

$$= 6 - 4 = 2$$

- (AD)²

$$CD = \sqrt{2}$$
.

(3)

$$\vec{r} = (2, -2, 3) + \lambda(1, -1, 4)$$

 $\vec{r} \cdot (1, 5, 1) = 5$
(2,-2,3)
 $\vec{a} \quad \vec{b} \quad \vec{b} \quad \vec{c} \quad \vec{c$

Q.44 (2)

Q.43

Equation of Altitude or plane is

 $\vec{r} = i - 2\hat{i} + 2\hat{k} + \lambda(2\hat{i} + 3\hat{j})$ Let a point of line $x=1+2\lambda \\$ $y = -2 + 3\lambda$ $z=2-2\lambda \\$ Put there point in the of plane $((1+2\lambda)\hat{i} + (-2+3\lambda)\hat{j} + (2-2\lambda)\hat{k})$ $\left(2\hat{i}+3\hat{j}-2\hat{k}\right)\ +\ 312=0$

and find l Put the value of l and get two point Be cause Intersection point is nidpoint of Requred point and given point

$$(2\hat{i} + \hat{j} + 2\hat{k}).(3\hat{i} - 2\hat{j} - m\hat{k}) = 0$$

= 6 - 2 - 2m = 0 or m = 2

Q.46 (1)

Normal Vector
$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 1 & -1 & 2 \end{vmatrix} = 5(\hat{i} - \hat{j} - \hat{k})$$

Let $\vec{A} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$. If θ is the angle between vector

 \vec{A} and plane then 90 – θ will be the angle between normal and plane

$$\cos (90 - \theta) = \frac{5\alpha - 5\beta - 5\gamma}{5\sqrt{3}\sqrt{\alpha^2 + \beta^2 + \gamma^2}}$$

$$\sin^2 \theta = \frac{(\alpha - \beta - \gamma)^2}{3(\alpha^2 + \beta^2 + \gamma^2)} \Rightarrow \boxed{\beta \gamma = \alpha(\beta + \gamma)}$$

Q.47 (2)

$$[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^2 \neq 0$$

 $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2(\vec{a} \ \vec{b} \ \vec{c}] \neq 0$

Q.48 (1)

We have $\vec{a} \perp \vec{b} \Rightarrow \vec{a}, \vec{b}, \vec{a} \times \vec{b}$ are linearly independent.

 \vec{v} can be expressed uniquely in terms of \vec{a},\vec{b} and $\vec{a} \times \vec{b}$. $\vec{v} = x\vec{a} + y\vec{b} + z(\vec{a}\times\vec{b})$ Given $\vec{a} \cdot \vec{b} = 0$, $\vec{v} \cdot \vec{a} = 0$, $\vec{v} \cdot \vec{b} = 1$, $[\vec{v} \ \vec{a} \ \vec{b}] = 1$ $\vec{v} \cdot \vec{a} = x\vec{a}^2 = 0 \implies x = 0$ $\vec{v} \cdot \vec{b} = x\vec{a} \cdot \vec{b} + y\vec{b}^2 + z(b) \cdot (\vec{a} \times \vec{b}) = 1$ $yb^2 = 1$ \Rightarrow $y = \frac{1}{b^2}$ $\vec{v} \cdot (\vec{a} \times \vec{b}) = x.0 + y.0 + z |\vec{a} \times \vec{b}|^2 = 1$ $z = \frac{1}{|\vec{a} \times \vec{b}|^2}$ $\vec{\mathbf{v}} = \frac{1}{|\vec{\mathbf{b}}|^2}\vec{\mathbf{b}} + \frac{1}{|\vec{\mathbf{a}}\times\vec{\mathbf{b}}|^2}(\vec{\mathbf{a}}\times\vec{\mathbf{b}})$ (2) \vec{A} . $\vec{X} = C$ $\vec{A} \times \vec{X} = \vec{B}$ take cross with \vec{A} $\vec{A} \times (\vec{A} \times \vec{X}) = \vec{A} \times \vec{B}$ $\vec{X} = \frac{C\vec{A} - \vec{A} \times \vec{B}}{|\vec{A}|^2}$ (3) $\vec{A}.\vec{B} = \vec{A}.\vec{C}$ and $\vec{A} \times \vec{B} = \vec{A} \times \vec{C}$ $\vec{A} \times \vec{B} = \vec{A} \times \vec{C}$ $\vec{A} \times (\vec{A} \times \vec{B}) = \vec{A} \times (\vec{A} \times \vec{C})$

 $(\vec{A}.\vec{B})\vec{A} - |A|^2 \vec{B} = (\vec{A} \times \vec{C})\vec{A} - |A|^2 \vec{C}$

JEE-ADVANCED OBJECTIVE QUESTIONS

(C)

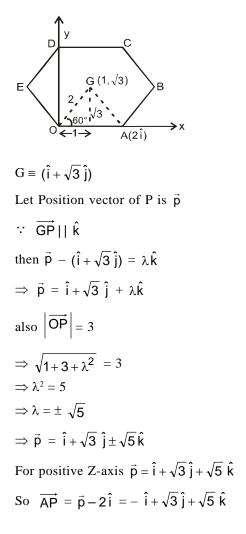
$$\vec{b} = \lambda (2\sqrt{2}\hat{i} - \hat{j} + 4\hat{k}); |\vec{b}| = 10$$

 $\Rightarrow |\lambda|\sqrt{8 + 1 + 16} = 10 \Rightarrow \lambda$
 $\Rightarrow \vec{b} = \pm 2\vec{a}$

 $=\pm 2$

Q.2 (C)

Q.1



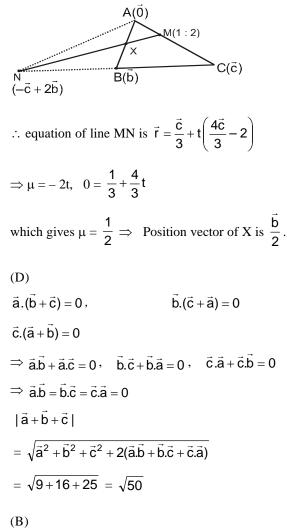
Q.3 (C)

Position vector of $M \equiv \frac{\vec{c}}{3}$ Position vector of $N \equiv (-\vec{c} + 2\vec{b})$ \therefore equation of line BC is $\vec{r} = \vec{b} + \lambda(\vec{b} - \vec{c})$ \therefore equation of line AB is is $\vec{r} = \vec{0} + \mu \vec{b}$

 $\vec{B}=\vec{C}$

Q.49

Q.50

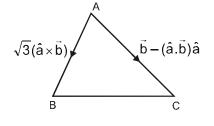


Q.4

Let
$$AB = \sqrt{3} (\hat{a} \times \hat{b})$$

 $\overrightarrow{AC} = \vec{b} - (\hat{a} \cdot \vec{b}) \hat{a}$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$
 $|\overrightarrow{AB}| = \sqrt{3} |\hat{a}| |\vec{b}| \sin \theta = \sqrt{3} |\vec{b}| \sin \theta$
 $|\overrightarrow{AC}|^2 = \vec{b}^2 + (\hat{a} \cdot \vec{b})^2 \hat{a}^2 - 2(\hat{a} \cdot \vec{b})(\hat{a} \cdot \vec{b})$
 $= \vec{b}^2 + |\vec{b}|^2 \cos^2 \theta - 2|\vec{b}|^2 \cos^2 \theta$

θ



 $= |\vec{b}|^2 \sin^2 \theta$

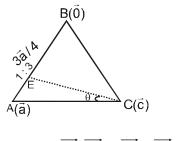
$$\Rightarrow |\overrightarrow{AC}| = |\overrightarrow{b}| \sin \theta$$

$$\therefore \quad \Delta \text{ ABC is right angled and ratio} \quad \frac{|\overrightarrow{AB}|}{|\overrightarrow{AC}|} = \sqrt{3}$$

angles are 90°, 60°, 30°

$$|\overrightarrow{AB}| = |\overrightarrow{BC}| = 8$$

or $|\overrightarrow{a}| = |\overrightarrow{c}| = 8$
CA = 12 $\Rightarrow |\overrightarrow{c} - \overrightarrow{a}| = 12$
 $\Rightarrow \overrightarrow{c}^2 + \overrightarrow{a}^2 - 2\overrightarrow{c}.\overrightarrow{a} = 144$
 $\Rightarrow 64 + 64 - 144 = 2\overrightarrow{c}.\overrightarrow{a}$ or $\overrightarrow{c}.\overrightarrow{a} = -8$



Consider $\overrightarrow{CE}.\overrightarrow{CA} = |\overrightarrow{CE}| |\overrightarrow{CA}| \cos \theta$ or $\left(\frac{3\vec{a}}{4} - \vec{c}\right) \cdot (\vec{a} - \vec{c}) = \left|\frac{3}{4}\vec{a} - \vec{c}\right| \cdot 12 \cos \theta$

$$\Rightarrow \frac{3}{4}\vec{a}.\vec{a} - \frac{3}{4}\vec{a}.\vec{c} - \vec{c}.\vec{a} + \vec{c}.\vec{c} = \sqrt{112} \quad 12 \cos\theta$$

or $\frac{3}{4}.64 - \frac{3}{4}(-8) - (-8) + 64 = \sqrt{112} \quad 12 \cos\theta$
$$\Rightarrow 48 + 6 + 8 + 64 = \sqrt{112} \quad 12\cos\theta$$

$$\Rightarrow \cos\theta = \frac{3\sqrt{7}}{8}$$

Q.7 (B)

$$\frac{1}{a} = A + (p-1) D, \frac{1}{b} = A + (q-1) D,$$

$$\frac{1}{c} = A + (r-1) D$$

$$\Rightarrow \quad \frac{1}{a} - \frac{1}{b} = (p-q) D \text{ or } p-q = \frac{b-a}{abD} \text{ and so on}$$

$$\Rightarrow \quad \vec{u} = \frac{c-b}{bcD}\hat{i} + \frac{a-c}{caD}\hat{j} + \frac{b-a}{abD}\hat{k}$$

Consider $\vec{u}.\vec{v} = \frac{c-b}{abcD} + \frac{a-c}{abcD} + \frac{b-a}{abcD} = 0$

(C)

$$|\vec{u} - \vec{v} + \vec{\omega}|^{2} = |\vec{u}|^{2} + |\vec{v}|^{2} + |\vec{\omega}|^{2} - 2(\vec{u}.\vec{v} + \vec{v}.\vec{\omega} - \vec{\omega}.\vec{u})$$

$$= 14 - 2(\vec{u}.\vec{v} + \vec{v}.\vec{\omega} - \vec{\omega}.\vec{u})$$
Given $\frac{\vec{u}.\vec{v}}{|\vec{u}|} = \frac{\vec{\omega}.\vec{u}}{|\vec{u}|} = \frac{\vec{\omega}.\vec{v}}{|\vec{u}|}$ and $\vec{\omega}.\vec{v} = 0 \& \vec{\omega}.\vec{i} = 0$
 $\vec{u}.\vec{v} = \vec{\omega}.\vec{u} = \frac{\vec{\omega}.\vec{v}}{|\vec{v}|}$
 $|\vec{u} - \vec{v} + \vec{\omega}|^{2} = 14 - 2(2\vec{\omega}.\vec{u})$
 $|\vec{u} - \vec{v} + \vec{\omega}|^{2} = 14$
 $|\vec{u} - \vec{v} + \vec{\omega}| = \sqrt{14}$

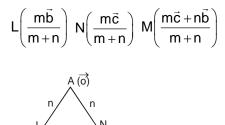
Q.9 (D)

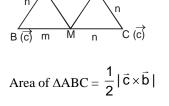
$$\vec{u} = (1, 1, 0), \ \vec{v} = (1, -1, 0), \ \vec{w} = (1, 2, 3)$$

 $\vec{u}.\hat{n} = 0, \ \vec{v}.\hat{n} = 0 \text{ then } \Rightarrow | \vec{w}.\hat{n} | = |\pm 3| = 3$
where $\hat{n} = \lambda(\vec{u} \times \vec{v}) \Rightarrow \hat{n} = -2\lambda\hat{k}$

$$|\hat{\mathbf{n}}| = 1 \Longrightarrow \lambda = \pm \frac{1}{2} \Longrightarrow 2\lambda = \pm 1$$

Assume A ($\vec{0}$), B (\vec{b}) C (\vec{c}) Position vector of L, M, N





Area of
$$\Delta LMN = \frac{1}{2} |\vec{LN} \times \vec{LM}|$$

$$= \frac{1}{2} \left| \left(\frac{n\vec{c} - m\vec{b}}{m+n} \right) \times \left(\frac{m\vec{c} + n\vec{b} - m\vec{b}}{m+n} \right) \right|$$

$$= \frac{1}{2} \frac{1}{(m+n)^2} \left| (n(n-m) + m^2) (\vec{c} \times \vec{b}) \right|$$

$$\frac{A(\Delta LMN)}{A(\Delta ABC)} = \frac{n^2 - mn + m^2}{(m+n)^2}$$
Q.11 (A)
If the radius of circum centre = r
 $|\vec{OA}_i| = r$ where $i = 1, 2, 3,, n$
 $\therefore \sum \vec{OA}_i \times |\vec{OA}_i| = \sum |\vec{OA}_i| |\vec{OA}_{i+1}| \sin \frac{2\pi}{n} \hat{n}$

$$= \sum r^2 \sin \frac{2\pi}{n} \hat{n} = (n-1)r^2 \sin \frac{2\pi}{n} \hat{n}$$

$$= (n-1) (\overrightarrow{OA}_1 \times \overrightarrow{OA}_2) = (1-n) (\overrightarrow{OA}_2 \times \overrightarrow{OA}_1)$$
(B)

Let S(
$$\vec{o}$$
), P(\vec{a}), Q(\vec{b}), R(\vec{c})
= $|\vec{PQ} \times \vec{RS} - \vec{QR} \times \vec{PS} + \vec{RP} \times \vec{QS}|$ = $|\vec{b} - \vec{a} \times (-\vec{c}) - (\vec{c} - \vec{b}) \times (-\vec{a}) + (\vec{a} - \vec{c}) \times (-\vec{b})|$
= $2 |(\vec{c} \times \vec{b})| = 2 (\vec{b} \times \vec{c}) = 4$ Area of RS

Q.12

 $(\vec{d} + \vec{a}) \cdot (\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d})))$ $(\vec{d} + \vec{a}) \cdot (\vec{a} + \{(\vec{b}.\vec{d})\vec{c} - (\vec{b}.\vec{c})\vec{d}\})$ $(\vec{d} + \vec{a}) \cdot [(\vec{b}.\vec{d})(\vec{a} \times \vec{c}) - (\vec{b}.\vec{c})(\vec{a} \times \vec{d})]$ $(\vec{b}.\vec{d}) [\vec{a} \quad \vec{c} \quad \vec{d}]$

$$\underbrace{(\vec{a} \times \vec{b})}_{P} \times (\vec{r} \times \vec{c}) + \underbrace{(\vec{b} \times \vec{c})}_{W} \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times \underbrace{(\vec{r} \times \vec{b})}_{V}$$

$$= \vec{P} \times (\vec{r} \times \vec{c}) + \vec{w} \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times \vec{v}$$

$$= (\vec{P}.\vec{c})\vec{r} - (\vec{P}.\vec{r})\vec{c} + (\vec{W}.\vec{a})\vec{r} - (\vec{W}.\vec{r})\vec{a} + (\vec{c}.\vec{V})\vec{a} - (\vec{a}.\vec{V})\vec{c}$$

$$= [\vec{a} \ \vec{b} \ \vec{c}]\vec{r} - [\vec{a} \ \vec{b} \ \vec{r}]\vec{c} + [\vec{b} \ \vec{c} \ \vec{a}]\vec{r} - [\vec{b} \ \vec{c} \ \vec{r}]\vec{a} +$$

 $[\vec{c} \ \vec{r} \ \vec{b}]\vec{a} - [\vec{a} \ \vec{r} \ \vec{b}]\vec{c}$ $= 2 [\vec{a} \ \vec{b} \ \vec{c}] \vec{r}$ Q.15 (D) $\vec{a} = (1, 1, 1),$ $\vec{\mathbf{b}} = (1, -1, 2),$ $\vec{c} = (x, x - 2, -1)$ $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{vmatrix} = (3, -1, -2)$ $\vec{c}.(\vec{a}\times\vec{b})=0$ \Rightarrow x = -2 3x - (x - 2) + 2 = 0Q.16 (D) $\vec{b} = (1, -1, 1)$ $\vec{a} = (x, y, 2)$ $\vec{c} = (1, 2, 0)$ $\vec{a} \cdot \vec{b} = 0$ $\vec{a}.\vec{c} = 4$

x - y + 2 = 0

x + 2y = 4

 $a |^2$

(C)

(C)

 $(\stackrel{\rightarrow}{a}$

Q.18

Q.17

x = 0, y = 2 $\vec{a} = (0, 2, 2)$

 $[\vec{a} \quad \vec{b} \quad \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$

 $\vec{b} \times \vec{d} = 0 \implies \vec{b} = \lambda \vec{d}$

 $\vec{a} = \vec{b} + \vec{c} \& \vec{c} \cdot \vec{d} = 0$

 $\Rightarrow \vec{a}.\vec{d} = \vec{b}.\vec{d} + \vec{c}.\vec{d}$

or $\vec{a}.\vec{d} = \vec{b}.\vec{d}$

... (1)

...(2)

 $\vec{b} \times \vec{c} = (-2, 1, 3) = (0, 2, 2) \cdot (-2, 1, 3) = 2 + 6 = 8$

 $= \vec{a} - \frac{(\vec{b}.\vec{d})\vec{d}}{\vec{d}^2} = \vec{a} - \frac{(\lambda \ \vec{d}.\vec{d})\vec{d}}{\vec{d}^2} = \vec{a} - \lambda \vec{d} = \vec{a} - \vec{b} = \vec{c}$

$$= (\mathbf{a} \cdot \mathbf{v}) \mathbf{b} - (\mathbf{b} \cdot \mathbf{v}) \mathbf{a}$$
$$= [\vec{a} \ \vec{b} \ \vec{c}] \vec{b}$$
$$(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = [\vec{b} \ \vec{c} \ \vec{a}] \vec{c}$$
$$(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) = [\vec{c} \ \vec{a} \ \vec{b}] \vec{a}$$
So box product = $[\vec{a} \ \vec{b} \ \vec{c}]^3 [\vec{a} \ \vec{b} \ \vec{c}]$
$$= [\vec{a} \ \vec{b} \ \vec{c}]^4$$

(A)
= (a, 1, 1), = (1, b, 1), = (1, 1, c)
$$\begin{bmatrix} \vec{A} & \vec{B} & \vec{C} \end{bmatrix} = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$$

Q.19

$$=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1$$

Q.20 (B)

$$\overrightarrow{PN} = (\lambda + 2, 3\lambda + 6, 5\lambda + 3)$$

 $\overrightarrow{b} = (1, 3, 5)$ $\overrightarrow{PN} \cdot \overrightarrow{b} = 0$

$$(\lambda + 9, 3\lambda + 5, 5\lambda + 5) \xrightarrow{P(7,-1,2)}{\overrightarrow{b}}$$

$$\begin{aligned} (\lambda+2)+3 & (3\lambda+6)+5(5\lambda+3)=0\\ \Rightarrow & 10(\lambda+2)+5(5\lambda+3)=0\\ \Rightarrow & 10\lambda+20+25\lambda+15=0\\ \Rightarrow & 35\lambda+35=0\Rightarrow\lambda=-1\\ \vec{N}=&(8,2,0)\Rightarrow\vec{N}=\frac{\vec{p}+\vec{p}'}{2} \end{aligned}$$

 \Rightarrow p' = 2N - P = 2(8, 2, 0) - (7, -1, 2) = (16, 4, 0) -(7, -1, 2) = (9, 5, -2)

$$(\vec{a} \times \vec{b}) \times \frac{(\vec{b} \times \vec{c})}{\vec{v}}$$

= $(\vec{a} \times \vec{b}) \times \vec{v}$

Now $\frac{\vec{d} \times (\vec{a} \times \vec{d})}{\vec{d}^2} = \frac{(\vec{d}.\vec{d})\vec{a} - (\vec{d}.\vec{a})\vec{d}}{\vec{d}^2}$

 $\vec{r}.\vec{n} = 1; \vec{r} = \vec{a} + \vec{b}$

Direction of lie will be = $(\vec{b} \times a)$

passing through =
$$\vec{c}$$

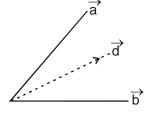
 $\vec{r} = \vec{c} + \lambda(\vec{b} \times \vec{n})$

Q.22 (A)

$$\vec{d} = \hat{a} + \hat{b}$$

$$= \frac{-4\hat{i} + 3\hat{k}}{5} + \frac{|14\hat{i} + 2\hat{j} - 5\hat{k}|}{15}$$

$$= \frac{-12\hat{i} + 9\hat{k} + 14\hat{i} + 2\hat{j} - 5\hat{k}}{15}$$



$$=\!\frac{2\hat{i}+2\hat{j}+4\hat{k}}{15}\!=\!\frac{2}{15}(\hat{i}+\hat{j}+\hat{k})$$

Q.23 (A) $\vec{r} = \vec{a} + \lambda \vec{p}, \vec{r} \cdot \vec{n} = 14$ so $\vec{p} \cdot \vec{n} = 0$ (2, 1, 12) $\cdot (3, -2, -m) = 0$ $6 - 2 - 2m = 0 \Rightarrow m = 2$

Q.24 (C)

$$\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0$$

$$\vec{r} = l(\vec{b} \times \vec{c}) + m (\vec{c} \times \vec{a}) + n(\vec{a} \times \vec{b})$$

$$\vec{r}.\vec{a} = l[\vec{a} \ \vec{b} \ \vec{c}] \qquad \dots(i)$$

$$\vec{r}.\vec{b} = m[\vec{a} \ \vec{b} \ \vec{c}] \qquad \dots(ii)$$

$$\vec{r}.\vec{c} = n[\vec{a} \ \vec{b} \ \vec{c}] \qquad \dots(iii)$$

Add them \vec{r} . $(\vec{a} + \vec{b} + \vec{c}) = (l + m + n) [\vec{a} \ \vec{b} \ \vec{c}]$ $\Rightarrow l + m + n = 0$

We have
$$V = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 \csc \alpha & 1 \\ 0 & 1 & 2 \csc \alpha \end{vmatrix}$$

= $4 \csc^2 \alpha - 1 - 2 \csc \alpha$
= $4 \left[\csc^2 \alpha - \frac{1}{2} \csc \alpha \right] - 1$

$$= 4\left(\cos \operatorname{ec} \alpha - \frac{1}{4}\right)^2 - \frac{5}{4}$$
$$\therefore \quad V_{least}\left(\alpha = \frac{\pi}{2}\right) = 4 \times \frac{9}{16} - \frac{5}{4} = \frac{4}{4} = 1.$$

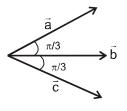
NUMERCIAL VALUE BASED

Q.1 [2]

Angle between vector $\vec{a} \& \vec{b}$ remains same even if we presume them as unit vector. Here for sake of convinience let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are unit vectors.

$$\vec{a} \cdot \vec{b} = \cos \frac{\pi}{3} = \frac{1}{2}$$
(1);
$$\vec{b} \cdot \vec{c} = \frac{1}{2}$$
(2)
$$\vec{a} \cdot \vec{d} = \cos \alpha$$
(3)
;
$$\vec{b} \cdot \vec{d} = \cos \beta$$
(4)
also
$$\vec{b} = \lambda (\vec{a} + \vec{c})$$

Since \vec{b} is presumed as unit vector



$$\begin{aligned} \left| \lambda(\vec{a} + \vec{c}) \right| &= 1 \implies \lambda^2 (\vec{a}^2 + \vec{c}^2 + 2\vec{a}.\vec{c}) = 1 \\ \text{or } \lambda^2 (1 + 1 - 1) &= 1 \implies \lambda = 1 \\ \therefore \vec{b} &= (\vec{a} + \vec{c}) \implies \vec{c} = \vec{b} - \vec{a} \\ \text{again} \qquad \vec{d}.\vec{c} &= \left| \vec{d} \right| \left| \vec{c} \right| \cos\theta = \vec{d}.(\vec{b} - \vec{a}) \\ \implies \cos\theta &= \cos\beta - \cos\alpha \implies \theta = \cos^{-1}(\cos\beta - \cos\alpha) \end{aligned}$$

Q.2 [9]

$$(\vec{R} - \vec{C}) \times \vec{B} = \vec{O} \qquad \Rightarrow \qquad \vec{R} = \vec{C} + \lambda \vec{B}$$
$$\Rightarrow A.C + \lambda A.B = 0 \qquad \Rightarrow \qquad 15 + 3\lambda = 0$$
$$\Rightarrow \lambda = -5 \Rightarrow \qquad \vec{R} = -\hat{i} - 8\hat{j} + 2\hat{k}$$

Q.3 [6]

Let O $(\vec{0})$ be the circumcentre of $\triangle ABC$

Given
$$(\vec{a}) = |\vec{b}| + |\vec{c}| = R \Rightarrow 0 = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$$

$$\Rightarrow \vec{a} + \vec{b} + \vec{c} = 0$$

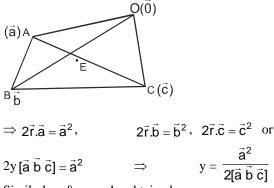
$$(\vec{a}) = \vec{p} \cdot \vec{p} \cdot$$

Q.4 [72]

vectors \vec{a} , \vec{b} & \vec{c} are non coplanar so are the vectors

 $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$

Let position vector of circumcentre $\vec{r} \equiv x(\vec{a} \times \vec{b}) + y(\vec{b} \times c) + z(\vec{c} \times \vec{a})$ OE = AE = EB = ECalso $\Rightarrow |\vec{r}| = |\vec{r} - \vec{a}| = |\vec{r} - \vec{b}| = |\vec{r} - \vec{c}|$ or $\vec{r}^2 = \vec{r}^2 + \vec{a}^2 - 2\vec{r}.\vec{a} =$ $\vec{r}^2 + \vec{b}^2 - 2\vec{r}\vec{b} = \vec{r}^2 + \vec{c}^2 - 2\vec{r}\vec{c}^2$



Similarly z & x can be obtained

Q.5 [18]

Equation of line AB is $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$

$$\Rightarrow \vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}) \qquad \dots \dots (1)$$

$$\overrightarrow{CD} = 2\hat{i} + 2\hat{j} - 2\hat{k} \qquad ;$$

$$\overrightarrow{CE} = 4\hat{i} + 5\hat{j} - 2\hat{k} \qquad ; \qquad \vec{n} = \overrightarrow{CD} \times \overrightarrow{CE}$$

$$= 6\hat{i} - 4\hat{j} + 2\hat{k}$$

So equation of plane CDE is $3x - 2y + z = 12$. Solve
with line $\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$

$$3(1 + \lambda) - 2(2 - \lambda) + 1 + \lambda = 12$$

$$\Rightarrow \lambda = 2 \qquad \text{Hence R is } 3\hat{i} + 3\hat{k}$$

Q.6 [36]

Q.7

(

=

Equation of line L_1 is $7\hat{i} + 6\hat{j} + 2\hat{k} + \lambda$ $(-3\hat{i}+2\hat{j}+4\hat{k})$ Equation of line L_2 is $5\hat{i}+3\hat{j}+4\hat{k}$ + μ $(2\hat{i} + \hat{j} + 3\hat{k})$ \overrightarrow{CD} = $2\hat{i}+3\hat{j}-2\hat{k}$ + λ $(-3\hat{i}+2\hat{j}+4\hat{k})$ - μ $(2\hat{i} + \hat{j} + 3\hat{k})$. since it is parallel to $2\hat{i} - 2\hat{j} - \hat{k}$ $\therefore \frac{2 - 3\lambda - 2\mu}{2} = \frac{3 + 2\lambda - \mu}{-2} = \frac{-2 + 4\lambda - 3\mu}{-1}$ $\therefore \lambda = 2, \mu = 1$ $\therefore \overrightarrow{\text{CD}} = -6\hat{i} + 6\hat{j} + 3\hat{k}$ $|4\overrightarrow{CD}| = 36$ [35]

We have $\vec{V}_1 \cdot \vec{V}_2 = 2(\sin \alpha + \cos \alpha) \sin \beta + \cos \beta$ $\vec{\mathbf{V}}$, $\vec{\mathbf{V}}$ - 3

$$|\vec{\mathbf{V}}_1 \cdot \vec{\mathbf{V}}_2 - 3|$$
[given that $2(\sin \alpha + \cos \alpha)\sin \beta + \cos \beta - 3$]

$$|\vec{\mathbf{V}}_1|^2 |\vec{\mathbf{V}}_2|^2 \cos^2 \theta = 9 \quad (\theta = \vec{\mathbf{V}}_1 \wedge \vec{\mathbf{V}}_2)$$
[4(1 + sin 2\alpha) + 1] (1)cos² \theta = 9
(5 + 4 sin 2\alpha) cos² \theta = 9

$$\cos^2 \theta = \frac{9}{5 + 4 \sin 2\alpha} \le 1 \implies 9 \le 5 + 4 \sin 2\alpha$$

$$\implies 4 \le 4 \sin 2\alpha \implies \sin 2\alpha \ge 1$$

$$\therefore \qquad \sin 2\alpha = 1 \Rightarrow \alpha = \frac{1}{4}$$
$$\therefore \qquad \cos^2 \theta = \frac{9}{9} = 1 \Rightarrow \theta = 0$$

Hence $\theta=0 \ \Rightarrow \ \vec{V}_1$ and $\ \vec{V}_2$ are collinear i.e.

$$\frac{2(\sin\alpha + \cos\alpha)}{\sin\beta} = \frac{1}{\cos\beta} \qquad \left(\alpha = \frac{\pi}{4}\right)$$

15

$$\tan\beta = 2\left(\frac{2}{\sqrt{2}}\right) = 2\sqrt{2}$$

Hence $3 \tan^2 \alpha + 4 \tan^2 \beta = 3 + (4)(8) = 35$

Q.8 [5]

Let P and Q be (x_1, y_1) and (x_2, y_2)

$$\overrightarrow{OP} \cdot \widehat{i} = x_1 = 2 \text{ and } \overrightarrow{OQ} \cdot \widehat{i} = x_2 = -2$$
Let $y = f(x) = x^7 - 2x^5 + 5x^3 + 8x + 5$

$$\therefore y_1 = f(x_1) = f(2) \text{ and } y_2 = f(x_2) = f(-2)$$

$$\therefore \left| \overrightarrow{OP} + \overrightarrow{OQ} \right| = x_1 \widehat{i} + y_1 \widehat{j} + x_2 \widehat{i} + y_2 \widehat{j}$$

$$= \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$$

$$= \sqrt{(f(2) + f(-2))^2}$$

$$= (f(2) + f(-2))\widehat{j}$$

So, magnitude of $\overrightarrow{OP} + \overrightarrow{OQ} = f(2) + f(-2) = 10$ (from the given functional rule) $\Rightarrow 2M = 10 \Rightarrow M = 5$ Ans.

Q.9 [0]

Q.10

 $\begin{array}{c} x^2 - 1 + y^2 - 3 = 0 = 0 \\ x^2 + y^2 = 4 \\ \dots (1) \end{array}$

which gives the locus of P i.e. P move on a circle with centre (0, 0) and radius 2. now

$$\begin{aligned} \left| \overrightarrow{\mathbf{PA}} \right|^{2} &= (x-1)^{2} + y^{2}; \qquad \left| \overrightarrow{\mathbf{PB}} \right|^{2} = (x+1)^{2} + y^{2} \\ \therefore \left| \overrightarrow{\mathbf{PA}} \right|^{2} \left| \overrightarrow{\mathbf{PB}} \right|^{2} &= (x^{2} + y^{2} - 2x + 1)(x^{2} + y^{2} + 2x + 1) \\ = (5 - 2x)(5 + 2x) \qquad [using x^{2} + y^{2} = 4 \\ \left| \overrightarrow{\mathbf{PA}} \right|^{2} \left| \overrightarrow{\mathbf{PB}} \right|^{2} \right| = 25 - 4x^{2} \text{ subject to } x^{2} + y^{2} = 4 \\ \left| \overrightarrow{\mathbf{PA}} \right|^{2} \left| \overrightarrow{\mathbf{PB}} \right|^{2} \right|_{min.} = 25 - 16 = 9; \text{ (when } x = 2 \text{ or } - 2) \\ and \left| \overrightarrow{\mathbf{PA}} \right|^{2} \left| \overrightarrow{\mathbf{PB}} \right|^{2} \right|_{max.} = 25 - 0 = 25 \text{ (when } x = 0) \\ 3 \le \left| \overrightarrow{\mathbf{PA}} \right| \left| \overrightarrow{\mathbf{PB}} \right|^{2} \le 5 \\ hence \qquad M = 5 \text{ and } m = 3 \Rightarrow M^{2} + m^{2} = 34 \text{ Ans.} \\ [48] \\ \text{Given } \left| \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}} \right| = 12; \quad \left| \overrightarrow{\mathbf{c}} \right| = 6 \\ \text{Equation of CD is } \overrightarrow{\mathbf{r}} = \lambda \overrightarrow{\mathbf{c}} \\ \& \text{ eq. of AB is } \overrightarrow{\mathbf{r}} = \overrightarrow{\mathbf{a}} + \mu(\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}) \\ \text{S.D.} = \left| \frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \times (\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}})}{\overrightarrow{\mathbf{c}} \times (\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}})} \right| = 8 \\ A(\overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}) = 8 \\ A(\overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}) = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{c}} \right| = 6 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{a}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{a}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{a}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{a}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{a}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{a}} \right| = 8 \\ \left| \left| \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{a}} \right| = 8 \\ \left| \overrightarrow{$$

Q.11

 $\Rightarrow 6V = (4)(6)(12) \Rightarrow V = 48$

Q.12 [5]

$$(\vec{p} \cdot \vec{r})\vec{q} - (\vec{q} \cdot \vec{r})\vec{p} + (\vec{q} \cdot \vec{r})\vec{q}$$

$$= (x^{2} + y^{2})\vec{q} + (14 - 4x - 6y)\vec{p}$$

$$\therefore \vec{p} \cdot \vec{r} + \vec{q} \cdot \vec{r} = x^{2} + y^{2} \qquad \dots(1)$$
and $-(\vec{q} \cdot \vec{r}) = 14 - 4x - 6y \qquad \dots(2)$
From (1) + (2)

$$\vec{p} \cdot \vec{r} = x^{2} + y^{2} - 4x - 6y + 14 \qquad \dots(3)$$

$$\therefore (\vec{r} \cdot \vec{r})\vec{p} = \vec{r}$$
Taking dot product with \vec{r} , we get
 $(\vec{r} \cdot \vec{r})(\vec{p} \cdot \vec{r}) = \vec{r} \cdot \vec{r} \Rightarrow \vec{p} \cdot \vec{r} = 1$

$$\therefore \text{ from}(3)$$

$$x^{2} + y^{2} - 4x - 6y + 14 = 1$$

$$\Rightarrow (x - 2)^{2} + (y - 3)^{2} = 0 \Rightarrow x = 2 \& y = 3$$
Hence $(x + y) = 5$. Ans.

Q.13
$$\left[\frac{\sqrt{3}}{2}\right]$$

 $A = \frac{1}{2} \left| \vec{a} \times \vec{b} \right| \text{ and } \left| \vec{a} \times \vec{b} \right|^2 = \vec{a}^2 \vec{b}^2 - \left(\vec{a}^2 \cdot \vec{b}^2 \right)^2$
 $\vec{a} = (t-1)\hat{i} - \hat{j} - 2\hat{k}; \qquad \vec{b} = 2\hat{i} + \hat{j} + \hat{k}$
 $\left| \vec{a} \right|^2 = (t-1)^2 + 1 + 4; \qquad \left| \vec{b} \right|^2 = 4 + 1 + 1 = 6$

$$\vec{a} \cdot \vec{b} = 2(t-1) - 1 - 2 = 2t - 5$$

$$|\vec{a} \times \vec{b}|^2 = 6[t^2 - 2t + 6] - (4t^2 + 25 - 20t)$$

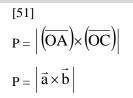
$$|\vec{a} \times \vec{b}|^2 = 2t^2 + 8t + 11$$

which is minimum at $t = -2$

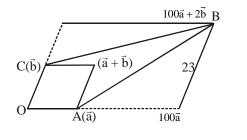
$$|\vec{a} \times \vec{b}|_{\min}^2 = 8 - 16 + 11 = 3$$

$$|\vec{a} \times \vec{b}|_{\min} = \sqrt{3}$$

$$\therefore \frac{|\vec{a} \times \vec{b}|_{\min}}{2} = \mathbf{A}_{\min} = \frac{\sqrt{3}}{2} \text{ Ans.}$$



Q.14



$$Q = \frac{1}{2} |\overline{OB} \times \overline{AC}| = \frac{1}{2} |(100\vec{a} + 2\vec{b}) \times (\vec{a} - \vec{b})|$$
$$= \frac{1}{2} |-100\vec{a} \times \vec{b} + 2\vec{b} \times \vec{a}|$$
$$= \frac{1}{2} |102(\vec{a} \times \vec{b})| = 51 |\vec{a} \times \vec{b}|$$
Now $Q = \lambda P$

$$51\left|\vec{a}\times\vec{b}\right| = \lambda\left|\vec{a}\times\vec{b}\right|$$

$$\lambda = 51 \text{ Ans.}$$

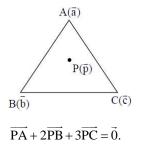
KVPY PREVIOUS YEAR'S

Q.1

(D)

$$\vec{u} \times \vec{v} = (2\hat{i} - \hat{j} + \hat{k}) \times (-3\hat{j} + 2\hat{k})$$

 $-6\hat{k} - 4\hat{j} - 2\hat{i} + 3\hat{i} = \hat{i} - 4\hat{j} - 6\hat{k}$
Let $\vec{w} = a\hat{i} + b\hat{j}$ $a^2 + b^2 = 1$
 $a = \cos\theta$; $b = \sin\theta$
max.value $= \sqrt{1^2 + (-4)^2} = \sqrt{17}$



 $\left(\vec{a}-\vec{p}\right)+2\left(\vec{b}-\vec{p}\right)+3\left(\vec{c}-\vec{p}\right)=0$

$$\vec{P} = \frac{\vec{a} + 2\vec{b} + 3\vec{c}}{6}$$

$$\frac{\text{Area} \Delta \text{ABC}}{\text{Area} \Delta \text{APC}} = \frac{\frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}{\frac{1}{2} |\vec{a} \times \vec{p} + \vec{p} \times \vec{c} \times \vec{c} \times \vec{a}|}$$
Put $\vec{P} = \frac{\vec{a} + 2\vec{b} + 3\vec{c}}{6}$
ratio = 3

Q.3 (A)

 $\vec{a} \times \vec{b} + \vec{c} \times \vec{b} = 0 \text{ similarly } \vec{b} + \vec{c} = \lambda_2 \vec{a}$ $\vec{a} + \vec{c} = \lambda_1 \vec{b} \qquad \vec{b} + \vec{a} = \lambda_3 \vec{c}$ Hence $\vec{a} + \vec{b} + \vec{c} = \vec{0}$

Only 1 position of centroid

Q.4 (C)

G is centroid

$$G = \frac{A + B + C}{3}$$

$$G = \frac{20 + H}{3}$$

$$2O + H = 3G$$

$$\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{A} - \overrightarrow{H} + \overrightarrow{B} - \overrightarrow{H} + \overrightarrow{C} - \overrightarrow{H}$$

$$= \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} - 3\overrightarrow{H}$$

$$= 3\overrightarrow{G} - 3\overrightarrow{H}$$

$$= 2\overrightarrow{O} + \overrightarrow{H} - 3\overrightarrow{H}$$

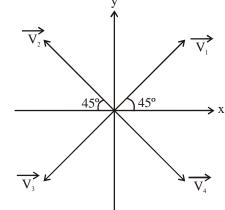
$$= 2\overrightarrow{HO}$$

$$\Rightarrow k = \frac{\lambda}{\mu}$$

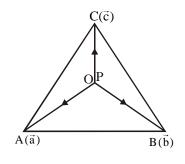
$$\Rightarrow \frac{1}{\lambda} + \frac{1}{\mu} = 3$$
AM \ge GM
$$\frac{1}{\lambda} + \frac{1}{\mu} = \frac{1}{\sqrt{\lambda\mu}} \Rightarrow \left(\frac{2}{3}\right)^2 \le \lambda\mu \quad \dots(1)$$
Now, $\frac{\text{area of } \Delta AMN}{\text{area of } ABC} = \frac{\frac{1}{2}\lambda\mu|\vec{b}\times\vec{c}|}{\frac{1}{2}|\vec{b}\times\vec{c}|} = \lambda\mu$
using $\frac{1}{\lambda} + \frac{1}{\mu} = 3 \Rightarrow \text{Ratio} = \frac{\lambda}{3\lambda - 1}\lambda \in [0, 1]$ maximum
value of ratio $= \frac{\lambda^2}{3\lambda - 1}$ attain when $\lambda = 1$ using derivative
but 1 is not 1 because M is an interior point.
So $\frac{4}{9} \le \text{ratio} < \frac{1}{2}$

Q.6

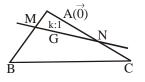
(A)



In this case B, C, D are not possible.



 $\vec{a}, \vec{b}, \vec{c}$ are unit vectors



Let
$$\overrightarrow{AB} = \overrightarrow{b}, \overrightarrow{AC} = \overrightarrow{c}$$

$$\overrightarrow{AM} = \lambda \overrightarrow{b}$$

$$\overrightarrow{AN} = m \vec{c}$$

Let G divides MN in the ratio k:1

So
$$\frac{k\mu \vec{c} + \lambda \vec{b}}{k+1} = \frac{\vec{b} + \vec{c}}{3}$$

 $\Rightarrow \frac{k\mu}{k+1} = \frac{1}{3}$ $\frac{\lambda}{k+1} = \frac{1}{3}$

$$\vec{a} \wedge \vec{b} = \vec{b} \wedge \vec{c} = \vec{c} \wedge \vec{a} = \frac{\pi}{3}$$

centre p $\left(\frac{\vec{0} + \vec{a} + \vec{b} + \vec{c}}{4}\right)$

Now angle between \overrightarrow{AP} & \overrightarrow{BP}

$$\begin{aligned} \cos\theta &= \frac{\overrightarrow{AP}.\overrightarrow{BP}}{|\overrightarrow{AP}||\overrightarrow{BP}|} = \frac{\left(\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{4}-\overrightarrow{a}\right) \cdot \left(\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{4}-\overrightarrow{b}\right)}{\left|\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{4}-\overrightarrow{a}\right| \left|\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{4}-\overrightarrow{b}\right|} \\ &= \frac{\left(\overrightarrow{b}+\overrightarrow{c}-3\overrightarrow{a}\right) \cdot \left(\overrightarrow{a}+\overrightarrow{c}-3\overrightarrow{b}\right)}{|\overrightarrow{b}+\overrightarrow{c}-3\overrightarrow{a}| \cdot |\overrightarrow{a}+\overrightarrow{c}-3\overrightarrow{b}|} \\ &= \frac{\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}-3\overrightarrow{b}^{2}+\overrightarrow{a}.\overrightarrow{c}+\overrightarrow{c}^{2}-3\overrightarrow{b}.\overrightarrow{c}-3\overrightarrow{a}^{2}-3\overrightarrow{a}.\overrightarrow{c}+9\overrightarrow{a}.\overrightarrow{b}}{(\overrightarrow{b}^{2}+\overrightarrow{c}^{2}+9\overrightarrow{a}^{2}+2\overrightarrow{b}.\overrightarrow{c}-6\overrightarrow{a}.\overrightarrow{c}-6\overrightarrow{a}.\overrightarrow{b})} \\ &= \frac{1}{2} + \frac{1}{2} - 3 + \frac{1}{2} + 1 - \frac{3}{2} - 3 - \frac{3}{2} + \frac{9}{2}}{1+1+9+1-3-3} \\ &= \frac{-5+3}{6} = -\frac{1}{3} \\ \theta &= \cos^{-1}\left(-\frac{1}{3}\right) \end{aligned}{}$$

Q.8 (B)

$$\vec{\mathbf{b}} = \lambda \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} \right)$$
$$\vec{\mathbf{a}} = \vec{\mathbf{b}} + \vec{\mathbf{c}}$$
$$\vec{\mathbf{c}} = \vec{\mathbf{a}} - \lambda \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} \right)$$
$$\vec{\mathbf{c}} = \left(6\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}} \right) - \lambda \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} \right)$$
$$\vec{\mathbf{c}} = \left(6 - \lambda \right)\hat{\mathbf{i}} + \left(-3 - \lambda \right)\hat{\mathbf{j}} + \left(-6 - \lambda \right)\hat{\mathbf{k}}$$
$$\vec{\mathbf{c}} \cdot \vec{\lambda} = 6 - \lambda - 3 - \lambda - 6 - \lambda = 0$$
$$3\lambda = 3$$
$$\lambda = -1$$
$$\vec{\mathbf{c}} = 7\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$$

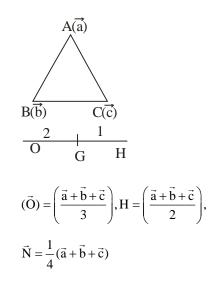
Q.9 (C)

V is the circumcentre of $\triangle ABC$ $\forall A \equiv (1,0), B \equiv (0,1) C(2,0)$ Let V (x,y) VA = VB = VC $(x-1)^2 + y^2 = x^2 + (y-1)^2 = (x-2)^2 + y^2$ $(x,y) = \left(\frac{3}{2}, \frac{3}{2}\right)$

$$V = \frac{3i + 3j}{2}$$
$$|v| = \frac{3}{\sqrt{2}} \in (2,3)$$

Q.10 (C)

Circumcenter (Origin O)



Q.11 (C)

Equations x + y + z = 0 ax + by + cz = 0, $a^{2}x + b^{2}y + cz = 0$, have a unique solution

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} \neq 0 \quad \Rightarrow (a-b)(b-c)(c-a) \neq 0$$

Q.12 (A)

 $|\vec{r} - \vec{b}| + |\vec{r} - \vec{c}| = 4$ is an ellipsoid with foci \vec{b}, \vec{c} . When it is cut by plane $\vec{r}.\vec{a} = 5$ i.e. x + y + z = 5 then we get ellipse with 2a = 4 and $2ae = |\vec{b} - \vec{c}| = \sqrt{14}$. Area of ellipse

$$= \pi ab = 2\pi \sqrt{a^2 - a^2 e^2} = 2\pi \sqrt{4 - \frac{14}{4}} = \pi \sqrt{2}$$

Q.13 (B)

$$\left(\frac{a_1}{2} + \frac{a_2}{4} + \frac{a_3}{8}\right)^2 = \frac{a_1^2}{2} + \frac{a_2^2}{4} + \frac{a_3^2}{8}$$

$$16a_{1}^{2} + 12a_{2}^{2} + 7a_{3}^{2} - 16a_{1}a_{2} - 4a_{2}a_{3} - 8a_{1}a_{3} = 0$$

$$\Rightarrow (2\sqrt{2}a_{1} - 2\sqrt{2}a_{2})^{2} + (2\sqrt{2}a_{1} - 2\sqrt{2}a_{3})^{2} + (2a_{2} - a_{3})^{2} + 4a_{3}^{2} = 0$$

$$\Rightarrow a_{1} = a_{2} = a_{3} = 0$$

JEE-MAIN

Q.1

PREVIOUS YEAR'S

(2) $\vec{r} \times \vec{a} = \vec{c} \times \vec{a}$ $(\vec{r} - \vec{c}) \times \vec{a} = \vec{0}$ $\Rightarrow \vec{r} - \vec{c} = \lambda \vec{a}$ $\vec{r} = \lambda \vec{a} + \vec{c}$ $\vec{r} \cdot \vec{b} = 0 \Rightarrow (\vec{a} \cdot \vec{b}) + (\vec{b} \cdot \vec{c}) = 0$ $2\lambda - 1 = 0 \Rightarrow \lambda = \frac{1}{2}$ $\therefore \vec{r} = \frac{1}{2} \vec{a} + \vec{c}$ $\vec{r} = \frac{1}{2} (\hat{i} + \hat{j} - \hat{k}) + (\hat{i} - 2\hat{j} - \hat{k})$ $\vec{r} = \frac{3}{2} \hat{i} - \frac{3}{2} \hat{j} - \frac{3}{2} \hat{k}$ $\vec{r} = \frac{3}{2} (\hat{i} - \hat{j} - \hat{k})$ $\vec{r} \cdot \vec{a} = \frac{3}{2} (\hat{i} - \hat{j} - \hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) = \frac{3}{2} (1 - 1 + 1) = \frac{3}{2}$

Q.2

[2]

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & \alpha & 1 \\ 1 & -\alpha & 3 \end{vmatrix} = 4\alpha \,\hat{\mathbf{i}} - 8 \,\hat{\mathbf{j}} - 4\alpha \,\hat{\mathbf{k}}$$

area = $|\overline{\mathbf{a}} \times \overline{\mathbf{b}}| = 8\sqrt{3}$
= $\sqrt{16\alpha^2 + 16\alpha^2 + 64} = 8\sqrt{3}$
= $32\alpha^2 + 64 = 64.3$
 $\alpha^2 + 2 = 2.3 = 6 \Longrightarrow a^2 = 4$
 $\alpha = \pm 2$
 $\overline{\mathbf{a}} \cdot \overline{\mathbf{b}} = 3 - \alpha^2 + 3 = 6 - 4 = 2$

Q.3 (1)
$$\vec{a} \times (\vec{a} \times ((\vec{a} \cdot \vec{b}) \cdot \vec{a} - |\vec{a}|^2 \cdot \vec{b}))$$

 $= \vec{a} \times (-|\vec{a}|^2 (\vec{a} \times \vec{b})) = --|\vec{a}|^2 ((\vec{a} \cdot \vec{b}) \cdot \vec{a} - |\vec{a}|^2 \cdot \vec{b})$

$$= -(\vec{a} \cdot \vec{b})\vec{a}$$
$$= |\vec{a}|^4 \vec{b} \quad (\because \vec{a} \cdot \vec{b} = 0)$$

Q.4 (2)

for points to be coplanar
$$\begin{vmatrix} 6 & 0 & -33 \\ 0 & y-5 & -28 \\ 2\lambda - 1 & -4 & -38 \end{vmatrix} = 0$$
$$\Rightarrow 6 (-33\lambda + 165 - 112) + 33 (2\lambda^2 - 11\lambda + 5) = 0$$
$$\Rightarrow -198\lambda + 318 + 66\lambda^2 - 363\lambda + 165 = 0$$
$$\Rightarrow 66\lambda^2 - 561\lambda + 483 = 0$$
$$Sum = \frac{561}{66} = \frac{187}{22} = \frac{17}{2}$$

Q.5 (1)

Q.6

$$\frac{x}{1} = -\frac{1}{y} = \frac{1}{z} = \lambda (let)$$

Unit vector parallel to

$$x\hat{i} + y\hat{j} + z\hat{k} = \pm \frac{\left(\lambda\hat{i} - \frac{1}{\lambda}\hat{j} + \frac{1}{\lambda}\hat{k}\right)}{\sqrt{\lambda^2 + \frac{2}{\lambda^2}}}$$
$$(\hat{i} - \hat{j} + \hat{k})$$

for
$$\lambda = 1$$
 it is $\pm \frac{(1 - J + k)}{\sqrt{3}}$

$$[75.00]$$

$$\vec{c} = \lambda \left(\vec{b} \times (\vec{a} \times \vec{b}) \right)$$

$$= \lambda \left(\left(\vec{b} \cdot \vec{b} \right) b - \left(\vec{b} \cdot \vec{a} \right) \vec{b} \right)$$

$$= \lambda \left(5 \left(-\hat{i} + \hat{j} + \hat{k} \right) + 2\hat{i} + \hat{k} \right)$$

$$= \lambda \left(-3\hat{i} + 5\hat{j} + 6\hat{k} \right)$$

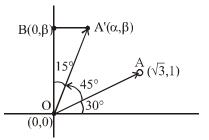
$$\vec{c} \ \vec{a} = 7 \Longrightarrow 3\lambda + 5\lambda + 6\lambda = 7$$

$$\lambda = \frac{1}{2}$$

$$\therefore 2 \left| \left(\frac{-3}{2} - 1 + 2 \right) \hat{i} + \left(\frac{5}{2} + 1 \right) \hat{j} + (3 + 1 + 1) \hat{k} \right|^2$$

$$= 2 \left(\frac{1}{4} + \frac{49}{4} + 25 \right) = 25 + 50 = 75$$

Q.7 (1)



Area of
$$\Delta$$
 (OA'B) = $\frac{1}{2}$ OA'cos15° × OA'sin15°
= $\frac{1}{2}$ (OA')² $\frac{\sin 30°}{2}$
= $(3+1) \times \frac{1}{8} = \frac{1}{2}$

Q.8 [28]

$$\vec{c} = \lambda(\vec{a} \times \vec{b})$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -1 \\ 1 & 2 & 1 \end{vmatrix}$$

$$(\vec{a} \times \vec{b}) = 3\hat{i} - 2\hat{j} + \hat{k}$$

$$\vec{c} \cdot (\hat{i} + \hat{j} + 3\hat{k}) = \lambda(3\hat{i} - 2\hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} + 3\hat{k})$$

$$\Rightarrow \lambda(4) = 8 \Rightarrow \lambda = 2$$

$$\vec{c} = 2(\vec{a} \times \vec{b})$$

$$\vec{c} \cdot (\vec{a} \times \vec{b}) = 2 |\vec{a} \times \vec{b}|^2 = 28$$

Q.9 (1)

$$\vec{r} \times \vec{a} - \vec{r} \times \vec{b} = 0$$

$$\Rightarrow \vec{r} \quad (\vec{a} \quad \vec{b}) \quad 0$$

$$\Rightarrow \vec{r} = \lambda(\vec{a} - \vec{b})$$

$$\Rightarrow \vec{r} = \lambda(-5\hat{i} - 4\hat{j} + 10\hat{k})$$
Also $\vec{r} \cdot (\hat{i} + 2\hat{j} + \hat{k}) = -3$

$$\Rightarrow \lambda(-5 - 8 + 10) = -3$$

$$\lambda = 1$$
Now $\vec{r} = -5\hat{i} - 4\hat{j} + 10\hat{k}$

$$= \vec{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k})$$

$$= -10 + 12 + 10 = 12$$

 $\vec{a}.\vec{b}=1 \implies -\alpha\beta - \alpha\beta - 3 = 1$ $\Rightarrow -2\alpha\beta = 4 \Rightarrow \alpha\beta = -2$ (1)

 $\frac{1}{3}$

Vectors

$$= \frac{1}{3} \begin{vmatrix} 0 & 0 & 2 \\ -2 & 1 & -1 \\ 1 & -2 & -1 \end{vmatrix} = \frac{1}{3} [2(4-1)] = 2$$

Q.11 (2) $\overrightarrow{OP} \perp \overrightarrow{OQ}$ $\Rightarrow -x + 2y - 3x = 0$ \Rightarrow y = 2x(i) $\left|\overrightarrow{PQ}\right|^2 = 20$ $\Rightarrow (x + 1)^2 + (y - 2)^2 + (1 + 3x)^2 = 20$ \Rightarrow x = 1 $\overrightarrow{OP}, \overrightarrow{OQ}, \overrightarrow{OR}$ are coplanar. 1

$$\Rightarrow \begin{vmatrix} x & y & -1 \\ -1 & 2 & 3x \\ 3 & z & -7 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 2 & -1 \\ -1 & 2 & 3 \\ 3 & z & -7 \end{vmatrix} = 0$$

$$\Rightarrow 1(-14 - 3z) - 2(7 - 9) - 1(-z - 6) = 0$$

$$\Rightarrow z = -2$$

$$\therefore x^{2} + y^{2} + z^{2} = 1 + 4 + 4 = 9$$

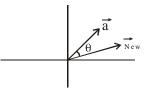
Q.12 [486] Let $\vec{x} = \lambda \vec{a} + \mu \vec{b}$ (λ and μ are scalars) $\vec{x} = \hat{i}(2\lambda + \mu) + \hat{j}(2\mu - \lambda) + \hat{k}(\lambda - \mu)$ Since $\vec{x} \cdot (3\hat{i} + 2\hat{j} - \hat{k}) = 0$ $3\lambda+8\mu=0$(1) Also Projection of \vec{x} on \vec{a} is $\frac{17\sqrt{6}}{2}$ $\frac{\vec{x} \cdot \vec{a}}{|\vec{a}|} = \frac{17\sqrt{6}}{2}$

Vectors

$$\begin{aligned} & 6\lambda - \mu = 51 & \dots (2) \\ & From (1) \text{ and } (2) \\ & \lambda = 8, \ \mu = -3 \\ & \vec{x} = 13\hat{i} - 14\hat{j} + 11\hat{k} \\ & |\vec{x}|^2 = 486 \end{aligned}$$

Q.13 (4)

$$\vec{a}_{Old} = 3p\hat{i} + \hat{j}$$



$$\vec{a}_{New} = (p+1)\hat{i} + a\sqrt{10}\hat{j}$$

$$\Rightarrow |\vec{a}_{Old}| = |\vec{a}_{New}|$$

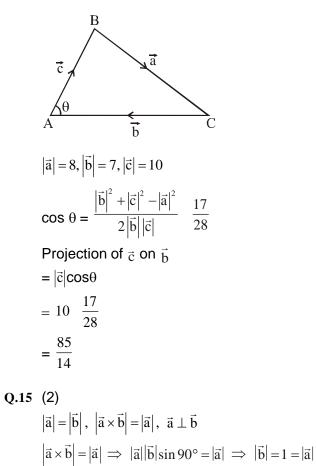
$$\Rightarrow ap^2 + 1 = p^2 + 2p + 1 + 10$$

$$8p^2 - 2p - 10 = 0$$

$$4p^2 - p - 5 = 0$$

$$(4p - 5) (p + 1) = 0 \rightarrow p = \frac{5}{4} - 1$$

Q.14 (2)



 \vec{a} and \vec{b} are mutually perpendicular unit vectors.

Let
$$\vec{a} = \hat{i}$$
, $\vec{b} = \hat{j} \implies \vec{a} \times \vec{b} = \hat{k}$
 $\cos \theta = \frac{(\hat{i} + \hat{j} + \hat{k}) \cdot \hat{i}}{\sqrt{3} \sqrt{1}} = \frac{1}{\sqrt{3}} \implies \theta = \cos^{-1} \left(\frac{1}{\sqrt{3}}\right)$

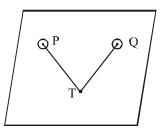
Q.16

P(3, -1, 2)
Q(1, 2, -4)
$$\overrightarrow{PR} \parallel 4\hat{i} - \hat{j} + 2\hat{k}$$

 $\overrightarrow{QS} \parallel -2\hat{i} + \hat{j} - 2\hat{k}$

(2)

dr's of normal to the plane containing P, T & Q will be proportional to :



$$\therefore \frac{\ell}{0} = \frac{m}{4} = \frac{n}{2}$$
For point, T: $\overrightarrow{PT} = \frac{x-3}{4} = \frac{y+1}{-1} = \frac{z-2}{2} = \lambda$

$$\overrightarrow{QT} = \frac{x-1}{-2} = \frac{y-1}{1} = \frac{z+4}{-2} = \mu$$
T: $(4\lambda + 3, -\lambda - 1, 2\lambda + 2)$

$$\cong (2\mu + 1, \mu + 2, -2\mu - 4)$$
 $4\lambda + 3 = -2\mu + 1 \implies 2\lambda + \mu = 1$
 $\lambda - \mu = -3 \implies \lambda = 2$
& $\mu = -5 \qquad \lambda + \mu = -3 \implies \lambda = 2$
So point T: $(11, -3, 6)$

$$\overrightarrow{OA} = (11\hat{i} - 3\hat{j} + 6\hat{k}) \pm (2\hat{j} + \hat{k})$$

$$\overrightarrow{OA} = (11\hat{i} - 3\hat{j} + 6\hat{k}) \pm (2\hat{j} + \hat{k})$$

$$\overrightarrow{OA} = 11\hat{i} - \hat{j} + 7\hat{k}$$
or
 $9\hat{i} - 5\hat{j} + 5\hat{k}$
 $|\overrightarrow{OA}| = \sqrt{121 + 1 + 49} = \sqrt{171}$
or
 $\sqrt{81 + 25 + 25} = \sqrt{131}$

$$\Rightarrow (\overline{c} + \lambda \overline{b}) \cdot \overline{a} = 0$$

$$\Rightarrow ((\overline{i} + 2\overline{j} + 3\overline{k}) + \lambda(-\overline{i} + \overline{j})) \cdot (-\overline{i} - \overline{k}) = 0$$

$$\Rightarrow \lambda ((\overline{i} - \lambda)\overline{i} + (2 + \lambda)\overline{j} + 3\overline{k}) \cdot (-\overline{i} + \overline{i}) = 0$$

$$\Rightarrow \lambda - 1 - 3 = 0$$

$$\Rightarrow \lambda = 4$$

so $\overline{r} \cdot \overline{b} = (-3\overline{i} + 6\overline{j} + 3\overline{k}) \cdot (-\overline{i} + \overline{j})$

$$= 3 + 6 = 9$$

Q.2 (A) \rightarrow (q) (B) \rightarrow (p), (C) \rightarrow (s), (D) \rightarrow (t)
(A) $\cos(\pi - \theta) = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}||\overline{b}|} = \frac{-1 + 3}{\sqrt{1 + 3}\sqrt{1 + 3}} = \frac{2}{4}$

$$-\cos\theta = \frac{1}{2}$$

 $\theta = \frac{2\pi}{3}$
(B) Using Leibeintz Theorem

$$\frac{\overline{c} \cdot \overline{c} \cdot \overline{c}}{\frac{1}{\sqrt{3}}} = \frac{\sqrt{6}}{\sqrt{1 + 3}} \frac{(n | \overline{b} - 2b)}{\sqrt{1 + 3}\sqrt{1 + 3}} = \frac{\pi^2}{\sqrt{1 + 3}} \frac{(n | \sec \pi x + \tan \pi x|)}{\pi} \Big|_{7/6}^{5/6}$$

$$= \frac{\pi^2}{\sqrt{n3}} \left\{ \frac{(n | \sec \pi x + \tan \pi x|)}{\pi} \right\}_{7/6}^{5/6}$$

$$= \frac{\pi^2}{\sqrt{n3}} \left\{ \frac{(n | (-\frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}})| - (n | -\frac{2}{3} + \frac{1}{\sqrt{3}})|}{\pi} \right\}$$

$$= \frac{\pi^2}{\sqrt{n3}} \left\{ \frac{(n | \frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{1}|}{\pi} \right\} = \pi$$

(D) z (z ≠ 1) lies on circle with center 0, radius 1

Arg $\left(\frac{1}{1-z}\right) = Arg \ 1 - Arg \ (1-z) = angle between$ OA and BA

Q.17 (1)

- **Q.18** (4)
- **Q.19** (1)
- **Q.20** [3]
- **Q.21** (4)
- **Q.22** (1)
- **Q.23** [60]
- **Q.24** (2)
- **Q.25** [2]
- **Q.26** (2)
- **Q.27** [9]
- **Q.28** (4)
- **Q.29** [4]
- **Q.30** [81]
- **Q.31** (3)
- **Q.32** [6]
- **Q.33** [1494]
- **Q.34** (3)
- **Q.35** (3)
- **Q.36** (4)
- **Q.37** [5]
- **Q.38** (1)
- **Q.39** [56]
- **Q.40** [90]

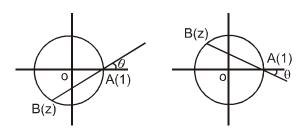
JEE-ADVANCED

PREVIOUS YEAR'S Q.1 [9]

$$(\vec{r} - \vec{c}) \times \vec{b} = 0$$

$$\vec{r} - \vec{c} = \lambda \vec{b} \implies \vec{r} = \vec{c} + \lambda \vec{b} \quad \lambda \in \mathbb{R}$$

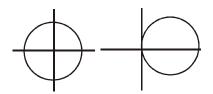
$$\because \vec{r} \cdot \vec{a} = 0$$



Absolute value of angle between OA and BA tends to

 $\frac{\pi}{2}$ as B tends to A. Alter # 1

$$\left| \arg\left(\frac{1}{1-z}\right) \right| = \left| \arg \left(1 - \arg \left(1 - z\right) \right) \right| = \left| \arg \left(1 - z\right) \right|$$



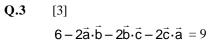
- as |z| = 1 i.e. z lies on circle
- \Rightarrow z lies on circle
- \Rightarrow 1 z lies on circle
- \Rightarrow max |arg (1 z)| = $\frac{\pi}{2}$

Alter # 2 $z = e^{i\theta}$

$$\frac{1}{1-z} = \frac{1}{2\sin^2\frac{\theta}{2} - i\sin\theta} = \frac{1}{2\sin\frac{\theta}{2}}$$

$$\left(\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}\right) = \frac{1}{2} + i\frac{1}{2}\cot\frac{\theta}{2}$$
Locus is $\frac{1}{1-z}$ is $x = \frac{1}{2}$

Maximum value of ϕ tends to $\frac{\pi}{2}$



$$\begin{aligned} \left(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}\right) &= \frac{-3}{2} \\ \left|\vec{a} + \vec{b} + \vec{c}\right|^2 \ge 0 \\ 3 + 2\left(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}\right) \ge 0 \\ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \ge \frac{-3}{2} \end{aligned}$$

Since $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \frac{-3}{2} \\ \Rightarrow \left|\vec{a} + \vec{b} + \vec{c}\right| = 0 \Rightarrow \vec{a} + \vec{b} + \vec{c} = \\ \Rightarrow \left|2\vec{a} + 5(-\vec{a})\right| = |3\vec{a}| \Rightarrow 3 \end{aligned}$

Q.5

(C)

Let
$$\vec{c} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

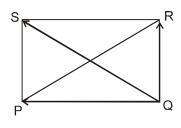
 $\vec{a} \times \vec{c} = \vec{c} \times \vec{b}$
 $\Rightarrow (\vec{a} + \vec{b}) \times \vec{c} = \vec{0}$
 $\Rightarrow (\vec{a} + \vec{b}) \parallel \vec{c}$
Let $(\vec{a} + \vec{b}) = \lambda \vec{c}$
 $\Rightarrow |\vec{a} + \vec{b}| = |\lambda| |\vec{c}|$
 $\Rightarrow \sqrt{29} = |\lambda| \cdot \sqrt{29}$
 $\Rightarrow \lambda = \pm 1$
 $\therefore \vec{a} + \vec{b} = \pm (2\hat{i} + 3\hat{j} + 4\hat{k})$
Now $(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k}) = \pm (-14 + 6 + 12) = \pm 4$

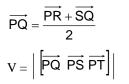
0

(C)

$$\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{PS}$$

 $\overrightarrow{SQ} = \overrightarrow{PQ} - \overrightarrow{PS}$
 $\overrightarrow{PS} = \frac{\overrightarrow{PR} - \overrightarrow{SQ}}{2}$





$$V = \frac{1}{4} \left| \begin{bmatrix} \overrightarrow{PR} + \overrightarrow{SQ}, \overrightarrow{PR} - \overrightarrow{SQ}, \overrightarrow{PT} \end{bmatrix} \right|$$
$$V = \frac{1}{2} \left| \begin{bmatrix} \overrightarrow{PR}, \overrightarrow{SQ}, \overrightarrow{PT} \end{bmatrix} \right|$$
$$\frac{1}{2} \begin{vmatrix} 3 & 1 & -2 \\ 1 & -3 & -4 \\ 1 & 2 & 3 \end{vmatrix}$$
$$\frac{1}{2} (-3 - 7 - 10) = 10$$

0.6

2 ${}^{8}C_{3} - 24 = [32]$ Among set of eight vectors four vectors form body diagonals of a cube, remaining four will be parallel (unlike) vectors. Numbers of ways of selecting three vectors will be ${}^{4}C_{3} \times 2 \times 2 \times 2 = 2^{5}$ Hence p = 5<u>Alternative</u> Eight vectors $\vec{x} \equiv \hat{i} + \hat{j} + \hat{k}$ $\vec{y} \equiv \hat{i} + \hat{j} - \hat{k}$ $\vec{z} \equiv \hat{i} - \hat{j} + \hat{k}$ $\vec{\omega} = \hat{i} - \hat{j} - \hat{k}$ $\vec{\mathbf{x}}' = -\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}$ $\vec{v}' = -\hat{i} - \hat{i} + \hat{k}$ $\vec{z}' = -\hat{i} + \hat{j} - \hat{k}$ $\vec{\omega}' = -\hat{i} + \hat{j} + \hat{k}$

If we take \vec{x} , \vec{x}' and any one of remaining sin x,

vectors will always be coplaner \therefore No. of coplaner vectors = 6 similarly on taking $\vec{y}, \vec{y}' = 6$

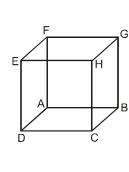
$$z, \bar{z}' = 6$$

coplaner vectors = 24

 $\begin{array}{c} \underline{Alternative} \\ A(0, 0, 0) \\ B(1, 0, 0) \\ C(1, 0, 1) \\ D(0, 0, 1) \\ E(0, 1, 1) \\ F(0, 1, 0) \\ G(1, 1, 0) \\ H(1, 1, 1) \end{array}$

 $\overrightarrow{AH} = \hat{i} + \hat{j} + \hat{k}$

 $\overrightarrow{\mathsf{BE}} = -\hat{i} + \hat{i} + \hat{k}$



∴ No. of set of

 $\overrightarrow{CF} = -\hat{i} + \hat{j} - \hat{k}$ $\overrightarrow{DG} = \hat{i} + \hat{j} - \hat{k}$ Non-coplaner

Q.8

(C)

(P) $[\vec{a}\vec{b}\vec{c}] = 2$ $2(\vec{a}\times\vec{b}), 3(\vec{b}\times\vec{c}), (\vec{c}\times\vec{a})$ $6[\vec{a}\times\vec{b}\ \vec{b}\times\vec{c}\ \vec{c}\times\vec{a}] = 6[\vec{a}\ \vec{b}\ \vec{c}]^2$ $= 6 \times 4 = 24$ $P \rightarrow 3$ (Q) $[\vec{a}\vec{b}\vec{c}] = 5$ $[3(\vec{a}+\vec{b}) (\vec{b}+\vec{c}) 2(\vec{c}+\vec{a})]$ $= 6 \times 2 [\vec{a} \vec{b} \vec{c}]$ $= 12 \times 5 = 60$ $Q \rightarrow 4$ (R) $\frac{1}{2} |\vec{a} \times \vec{b}| = 20$ $\Delta_1 = \frac{1}{2} | (2\vec{a} + 3\vec{b}) \times (\vec{a} - \vec{b}) |$ $=\frac{1}{2}\left|-2\vec{a}\times\vec{b}-3(\vec{a}\times\vec{b})\right|$ $=\frac{5}{2}|\vec{a}\times\vec{b}|$ $= 5 \times 20 = 100$ $R \rightarrow 1$ (S) $|\vec{a} \times \vec{b}| = 30$ $|(\vec{a}+\vec{b})\times\vec{a}| = |\vec{b}\times\vec{a}| = 30$ $S \rightarrow 2$ (ABC) $|\vec{x}| = |\vec{y}| = |\vec{z}| = \sqrt{2}$

$$\theta = \frac{\pi}{3}$$
$$\vec{a} = \lambda \vec{x} \times (\vec{y} \times \vec{z})$$
$$\vec{b} = \mu \vec{y} \times (\vec{z} \times \vec{x})$$
$$\vec{a} = ((\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z})$$
$$\vec{a} = \lambda \left(2 \times \frac{1}{2} \vec{y} - 2 \times \frac{1}{2} \vec{z} \right)$$
$$\vec{a} = \lambda (\vec{y} - \vec{z})$$

$$\vec{b} = \mu(\vec{z} - \vec{x})$$
Similarly
$$\vec{a}.\vec{y} = \lambda \left(2 - 2 \times \frac{1}{2}\right) = \lambda$$

$$\vec{a} = (\vec{a}.\vec{y})(\vec{y} - \vec{z}) \Rightarrow B)$$

$$\vec{b}.\vec{z} = \mu \left(2 - 2 \times \frac{1}{2}\right)$$

$$\mu = \vec{b}.\vec{z}$$

$$\therefore \vec{b} = (\vec{b}.\vec{z})(\vec{z} - \vec{x}) \Rightarrow (A)$$

$$(A) \ \vec{a}.\vec{b} = (\vec{a}.\vec{y})(\vec{y} - \vec{z}).(\vec{b}.\vec{y})(\vec{z} - \vec{x})$$

$$= (\vec{a}.\vec{y})(\vec{b}.\vec{z})(\vec{y}\vec{z} - \vec{y}\vec{x} - 2 + \vec{x}\vec{z})$$

$$= (\vec{a}.\vec{y})(\vec{b}.\vec{z}) \Rightarrow (C)$$

Q.9

[4]

Taking dot product with
$$\vec{a}$$
, \vec{b} , \vec{c} we get
 $p + \frac{q}{2} + \frac{r}{2} = [a \ b \ c]$ (1)
 $\frac{p}{2} + q + \frac{r}{2} = 0$ (2)
 $p = q$

 $p\vec{a} + q\vec{b} + r\vec{c} = a \times b + b \times c$

$$\frac{r}{2} + \frac{r}{2} + r = [a \ b \ c] \qquad \dots \dots (3)$$
(1) & (3) $\Rightarrow p = r \ & q = -p$

$$\frac{p^2 + 2q^2 + r^2}{q^2} = \frac{p^2 + 2p^2 + p^2}{p^2} = 4 \ \text{Ans.}$$

Q.10 (A)
(P)
$$y = 4x^3 - 3x$$
 where $\cos\theta = x$
 $\frac{dy}{dx} = 12x^2 - 3$
 $\frac{d^2y}{dx^2} + x\frac{dy}{dx} = (x^2 - 1) \cdot 24x + x(12x^2 - 3)$

 $= 36x^{3} - 27x = 9(4x^{3} - 3x) = 9y$ Hence $\frac{1}{y} \left\{ \left(x^{2} - 1\right) \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} \right\} = 9$ (Q) $\left| \vec{a}_{1} \times \vec{a}_{2} + \vec{a}_{2} \times \vec{a}_{3} + \ldots + \vec{a}_{n-1} \times \vec{a}_{n} \right| =$ $\left| \vec{a}_{1} \cdot \vec{a}_{2} + \vec{a}_{2} \cdot \vec{a}_{3} + \ldots + \vec{a}_{n-1} \cdot \vec{a}_{n} \right|$ Let $\left| \vec{a}_{1} \right| = \left| \vec{a}_{2} \right| = \ldots = \left| \vec{a}_{n} \right| = \lambda$ (as centre is origin)
More over angle between 2
consecutive \vec{a}_{i} 's is $\frac{2\pi}{n}$ Hence given equation reduces to $(n - 1)\lambda^{2} \sin\left(\frac{2\pi}{n}\right) = (n - 1)\lambda^{2} \cos\left(\frac{2\pi}{n}\right)$ $\Rightarrow \tan\left(\frac{2\pi}{n}\right) = 1 \Rightarrow \frac{2\pi}{n} = \frac{\pi}{4} \Rightarrow n = 8$ (R) Equation of normal $\frac{6x}{h} - \frac{3y}{1} = 3$

$$\left(\text{Equation of normal is } \frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2\right)$$

slope =
$$\frac{6}{3h}$$
 = 1 (as it is perpendicular to $z + y = 1$)
 $\Rightarrow h = 2$
(S) $\tan^{-1}\left(\frac{1}{2x+1}\right) + \tan^{-1}\left(\frac{1}{4x+1}\right) + \tan^{-1}\left(\frac{2}{x^2}\right)$

$$\Rightarrow \frac{1}{2x+1} + \frac{1}{4x+1}$$
$$= \frac{2}{x^2} \Rightarrow \frac{6x+2}{8x^2+6x} = \frac{2}{x^2}$$
$$\Rightarrow 3x^3 + x^2 = 8x^2 + 6x \Rightarrow 3x^3 - 7x^2 - 6x = 0$$
$$\Rightarrow 3x^2 - 7x + 6 = 0 \text{ (as } x \neq 0)$$
$$\Rightarrow (x-3) (3x+2) = 0 \Rightarrow x = -\frac{2}{3}, 3$$
$$\left(-\frac{2}{3} \text{ is rejected}\right)$$

Q.11 (A,C,D) $\vec{a} + \vec{b} + \vec{c} = 0$ $\Rightarrow \vec{b} + \vec{c} = -\vec{a}$

$$\Rightarrow 48 + \vec{c}^2 + 48 = 144$$

$$P \xrightarrow{\vec{c}} Q$$

$$\Rightarrow \vec{c}^{2} = 48$$

$$\Rightarrow |\vec{c}^{2}| = 4\sqrt{3}$$

$$\therefore \frac{|\vec{c}|^{2}}{2} - |\vec{a}| = 24 - 12 = 12 \text{ Ans. (A)}$$
Further
$$\vec{a} + \vec{b} = -\vec{c}$$

$$\Rightarrow 144 + 48 + 2\vec{a}.\vec{b} = 48$$

$$\Rightarrow \vec{a}.\vec{b} = -72 \qquad \text{Ans. (D)}$$

$$\therefore \vec{a} + \vec{b} + \vec{c} = 0$$

$$\Rightarrow \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = 0$$

$$\therefore |\vec{a} \times \vec{b} + \vec{c} \times \vec{a}| = 2|\vec{a} \times \vec{b}| = 2.\sqrt{144.48 - (72)^{2}} = 48\sqrt{3} \qquad \text{Ans. (C)}$$

Q.12 (A)
$$\rightarrow$$
 P,Q; (B) \rightarrow P,Q; (C) \rightarrow P,Q,S,T; (D) \rightarrow Q,
T
(A) $\left| \left(\alpha \hat{i} + \beta \hat{j} \right) \cdot \left(\frac{\sqrt{3}\hat{i} + \hat{j}}{2} \right) \right| = \sqrt{3} \Rightarrow$
 $\sqrt{3}\alpha + \beta = \pm 2\sqrt{3}$
 $\sqrt{3}\alpha + \left(\frac{\alpha - 2}{\sqrt{3}} \right) = \pm 2\sqrt{3}$
 $\Rightarrow 3\alpha + \alpha - 2 = \pm 6 \Rightarrow 4\alpha = 8, -4 \Rightarrow \alpha = 2, -1$
(A \rightarrow P,Q)
(B) Continuous $\Rightarrow -2\alpha - 2 = b + a^2$

(B) Continuous $\Rightarrow -3a - 2 = b + a^2$ differentiable $\Rightarrow -6a = b \Rightarrow 6a = a^2 + 3a + 2$ $\Rightarrow a^2 - 3a + 2 = 0 \Rightarrow a = 1, 2$ (B \Rightarrow P, Q)

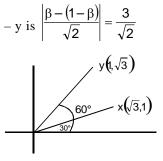
(D) $\frac{2ab}{a+b} = 4 \implies ab = 2a + 2b \dots(i)$ q = 10 - a and 2q = 5 + b $\Rightarrow 20 - 2a = 5 + b \Rightarrow$ 15 = 2a + b(ii) From (i) and (ii) a(15-2a) = 2a + 2(15-2a) $\Rightarrow 15a - 2a^2 = -2a + 30 \qquad \Rightarrow 2a^2 - 17a + 30 = 0$ $\Rightarrow a = 6, \frac{5}{2}$ \Rightarrow q = 4, $\frac{15}{2}$ \Rightarrow |q - a| = 2, 5 $(\mathbf{D} \rightarrow \mathbf{Q}, \mathbf{T})$ (C) Let $a = 3 - 3\omega + 2\omega^2$ $a\omega=3\omega-3\omega^2+2$ $a\omega^2 = 3\omega^2 - 3 + 2\omega$ Now $a^{4n+3} (1 + \omega^{4x+3})$ $+ (\omega^2)^{4n+3} = 0$ \Rightarrow n should not be a multiple of 3 Hence P, Q, S, T $(A) \rightarrow P, R, S; (B) \rightarrow P; (C) \rightarrow P, Q; (D) \rightarrow S, T$ Given $2(a^2 - b^2) = c^2$ $\Rightarrow 2(\sin^2 x - \sin^2 y) = \sin^2 z$ $\Rightarrow 2\sin(x + y) \sin(x - y) = \sin^2 z$ $\Rightarrow 2\sin(\pi - z) \sin(x - y) = \sin^2 z$ $z \Rightarrow sin(x - y) = \frac{sin z}{2}$...(i) also given, $\lambda = \frac{\sin(x-y)}{\sin z} = \frac{1}{2}$ $\Rightarrow \cos\left(\frac{n\pi}{2}\right) = 0$ Now, $\cos(n\pi\lambda) = 0$ \therefore n = 1, 3, 5 \therefore (A \rightarrow P,R,S) **(B)** $1 + \cos 2X - 2\cos 2Y = 2\sin X \sin Y$ $2\cos^2 X - 2\cos^2 Y = 2\sin X \sin Y$ $1 - \sin^2 X - 1 + 2\sin^2 Y = \sin X \sin Y$ $\sin^2 X + \sin X \sin Y = 2\sin^2 Y$ $sin(sinX + sinY) = 2sin^2Y$ sinX = ak, sinY = bk $a(a + b) = 2b^2$ $a^2 + ab - 2b^2 = 0$ $\left(\frac{a}{b}\right)^2 + \frac{a}{b} - 2 = 0$

Q.13

$$\frac{a}{b} = -2, 1$$
$$\frac{a}{b} = 1(\mathbf{B} \rightarrow \mathbf{P})$$

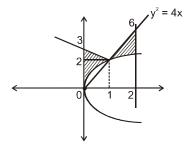
(C) Hence equation of acute angle bisector of OX and OY is y = xHence x - y = 0

Now, distance of $\beta \hat{i} + (1 - \beta)\hat{j} \equiv z(\beta, 1 - \beta)$ from x



$$\begin{aligned} |2\beta - 1| &= 3\\ 2\beta - 1 &= \pm 3\\ 2\beta &= 4, -2\\ \beta &= 2, -1\\ |\beta| &= 2, 1 \end{aligned}$$
 Ans. (P,Q)
(D) For $\alpha = 1$

$$y = |x - 1| + |x - 2| + x = \begin{cases} 3 - x & ; & x < 1 \\ 1 + x & ; & 1 \le x < 2 \\ 3x - 3 & ; & x \ge 2 \end{cases}$$

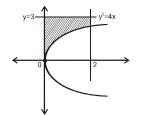


$$A = \frac{1}{2}(2+3) \times 1 + \frac{1}{2}(2+3) \times 1 - \int_{0}^{2} 2\sqrt{x} dx$$

$$A = 5 - \frac{o}{3}\sqrt{2}$$

:.
$$F(1) + \frac{6}{3}\sqrt{2} = 5$$

For $\alpha = 0$, $y = |-1| + |-2| = 3$



$$A = 6 - \int_{0}^{2} 2\sqrt{x} dx \implies A = 6 - \frac{8}{3}\sqrt{2}$$

$$\therefore F(0) + \frac{8}{3}\sqrt{2} = 6 \quad \therefore (D \rightarrow s, t)$$

Q.14 (BONUS)

This question in seem to be wrong but examiner may think like this

$$\begin{split} \vec{S} &= 4\vec{p} + 3\vec{q} + 5\vec{r} \\ \vec{S} &= x(-\vec{p} + \vec{q} + \vec{r}) + y(\vec{p} - \vec{q} + \vec{r}) + z(-\vec{p} - \vec{q} + \vec{r}) \\ -x + y - z &= 4 & \dots (1) \\ x - y - z &= 3 & \dots (2) \\ x + y + z &= 5 & \dots (2) \\ x + y + z &= 5 & \dots (3) \\ add (1) and (2) \\ -2z &= 7 \Rightarrow z &= -\frac{7}{2} \\ 2x &= 8 \Rightarrow x = 4 \\ y + z &= 1 \\ 2x + y + z &= 2(4) + 1 = 9 \end{split}$$

Q.15 (B, C)

$$\hat{w}.(\hat{u} \times \vec{v}) = 1$$

$$\Rightarrow |\vec{w}| |\vec{u} \times \vec{v}| \cos \theta = 1 \qquad \theta \text{ is angle between}$$

$$\hat{w} \text{ and } \hat{u} \times \vec{v}$$

$$\Rightarrow \cos \theta = 1 \qquad \Rightarrow \theta = 0 \Rightarrow \hat{u} \times \vec{v} \text{ is parallel to } \hat{w}$$

$$\Rightarrow \hat{w}.\hat{u} = 0 \text{ and } \hat{w}.\vec{v} = 0$$
So, there are infinitely many choices for such \vec{v}
If \hat{u} lies in the xy-plane then
$$\frac{1}{\sqrt{6}}u_1 + \frac{1}{\sqrt{6}}u_2 = 0 \qquad \Rightarrow u_1 = -u_2 \qquad \Rightarrow |u_1| = |u_2|$$
If \hat{u} lies in the xz-plane then
$$\frac{1}{\sqrt{6}}u_1 = 0$$

$$\frac{1}{\sqrt{6}}u_1 + \frac{2}{\sqrt{6}}u_3 = 0 \qquad \Rightarrow u_1 = -2u_3 \qquad \Rightarrow |u_1| = 2|u_3|$$

Q.16 (B,C,D) P(2,0,0)

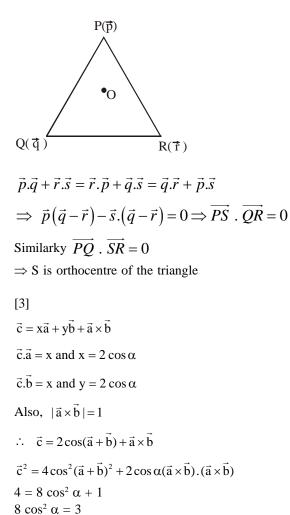
P(3, 0, 0), R(0, 3, 0), Q(3, 3, 0), T(3/2, 3/2, 0), S(3/2, 3/2, 3)

$$\overrightarrow{OQ} = 3i + 3j, \ \overrightarrow{OS} = \frac{3}{2}i + \frac{3}{2}j + 3k$$

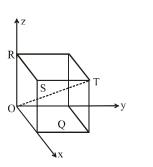
Let , θ be angle between \overrightarrow{OQ} and \overrightarrow{OS} , then

$$\cos\theta = \frac{1}{\sqrt{3}}$$

Eqⁿ of plane containing triangle OQS is x - y = 0Hence, (b, c, d)



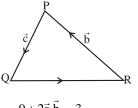
Q.18



$$\vec{p} = \vec{SP} = \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right) = \frac{1}{2}\left(\hat{i} + \hat{j} - \hat{k}\right)$$
$$\vec{q} = \vec{SQ} = \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right) = \frac{1}{2}\left(-\hat{i} + \hat{j} + \hat{k}\right)$$
$$\vec{r} = \vec{SR} = \left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) = \frac{1}{2}\left(-\hat{i} - \hat{j} - \hat{k}\right)$$
$$\hat{t} = \vec{ST} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) = \frac{1}{2}\left(\hat{i} + \hat{j} + \hat{k}\right)$$

$$\begin{split} \left| (\vec{p} \times \vec{q}) \times (\vec{r} \times \vec{t}) \right| &= \frac{1}{4} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & -1 \\ -1 & 1 & -1 \end{vmatrix} \times \frac{1}{4} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \\ &= \frac{1}{16} \Big| (2\hat{i} + 2\hat{j}) \times (-2\hat{i} \times 2\hat{j}) \Big| &= \left| \frac{\hat{k}}{2} \right| = \frac{1}{2} \\ \mathbf{Q.20} \quad [0.75] \\ &A(1,0,0), B\left(\frac{1}{2}, \frac{1}{2}, 0 \right) \& C\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \\ &Hence, \overline{AB} = -\frac{1}{2} \hat{i} + \frac{1}{2} \hat{j} \& \\ &\overline{AC} = -\frac{2}{3} \hat{i} + \frac{1}{3} \hat{j} + \frac{1}{3} \hat{k} \\ &So, \Delta = \frac{1}{2} \left| \overline{AB} \times \overline{AC} \right| = \frac{1}{2} \sqrt{\frac{1}{2} \times \frac{2}{3} - \frac{1}{4}} = \frac{1}{2 \times 2\sqrt{3}} \\ &\Rightarrow (6\Delta)^2 = \frac{3}{4} = [0.75] \\ \mathbf{Q.21} \quad [18.00] \\ &\vec{c} = (2\alpha + \beta)\hat{i} + \hat{j}(\alpha + 2\beta) + \hat{k}(\beta - \alpha) \\ &\frac{\vec{c}.(\vec{a} + \vec{b})}{|\vec{a} + \vec{b}|} = 3\sqrt{2} \\ &\Rightarrow \alpha + \beta = 2 \qquad \dots \dots (1) \\ &(\vec{c} - (\vec{a} \times \vec{b})).(\alpha \vec{a} + \beta \vec{b}) \\ &= |\vec{c}|^2 = \alpha^2 |a|^2 + \beta^2 |b|^2 + 2\alpha\beta(\vec{a}.\vec{b}) \\ &= 6 (\alpha^2 + \beta^2 + \alpha\beta) \\ &= 6 ((\alpha - 1)^2 + 3) \\ &\Rightarrow \text{Min. value} = 18 \\ \\ \mathbf{Q.22} \quad [108.00] \\ &\text{We have, } \vec{a} + \vec{b} + \vec{c} = \vec{0} \\ &\Rightarrow \vec{c} = -\vec{a} - \vec{b} \\ \end{split}$$

Now,
$$\frac{\vec{a} \cdot \left(-\vec{a}-2\vec{b}\right)}{\left(-\vec{a}-\vec{b}\right) \cdot \left(\vec{a}-\vec{b}\right)} = \frac{3}{7}$$

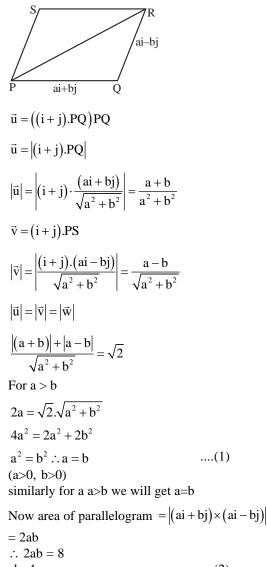


$$\Rightarrow \frac{9+2\bar{a}.b}{9-16} = \frac{3}{7}$$

. .

. .

$$\Rightarrow \vec{a}.\vec{b} = -6$$
$$\Rightarrow \left|\vec{a} \times \vec{b}\right|^2 = a^2 b^2 - \left(\vec{a}.\vec{b}\right)^2 = 9 \times 16 - 36 = 108$$



 $ab=4 \qquad(2)$ from (1) and (2) a=2, b=2 : a+b=4 option (A) length of diagonal is $|2a\hat{i}| = |4\hat{i}| = 4$

so option (C)

(A,B,C) $\overrightarrow{OB} \times \overrightarrow{OC} = \frac{1}{2} \overrightarrow{OB} \times (\overrightarrow{OB} - \lambda \overrightarrow{OA})$ $= \frac{\lambda}{2} (\overrightarrow{OA} \times \overrightarrow{OB})$ $|\overrightarrow{OB}| \times |\overrightarrow{OC}| = \frac{|\lambda|}{2} |\overrightarrow{OA}| \times |\overrightarrow{OB}|$ (Note $\overrightarrow{OA} & \overrightarrow{OB}$ are perpendicular) $\Rightarrow \frac{9\lambda}{2} = \frac{9}{2} \Rightarrow \lambda = 1 \text{ (given } \lambda > 0)$ So $\overrightarrow{OC} = \frac{\overrightarrow{OB} - \overrightarrow{OA}}{2} = \frac{\overrightarrow{AB}}{2}$ M is mid point of ABNote projection of \overrightarrow{OC} on $\overrightarrow{OA} = -\frac{3}{2}$ $\tan \theta = \frac{1}{2}$

 $\tan \theta = \frac{1}{3}$

Q.24

Area of $\triangle ABC = \frac{9}{2}$ Acute angle between diagonals is

$$\tan^{-1}\left(\frac{1+\frac{1}{3}}{1-\frac{1}{3}}\right) = \tan^{-1} 2$$

3-Dimensional Geometry

EXERCISES

ELEMENTRY

Q.1

(2)
From x-axis
$$= \sqrt{y^2 + z^2} = \sqrt{4+9} = \sqrt{13}$$

From y-axis $= \sqrt{1+9} = \sqrt{10}$
From z-axis $= \sqrt{1+4} = \sqrt{5}$

Q.2 (3)

Check option (3), $\frac{4-(-2)}{-3-4} \neq \frac{-3-4}{-2-(-3)}$

Therefore, this set of points is non-collinear.

Q.3 (2)

Obviously, the projection

$$= [2 - (-1)]\frac{6}{7} + [5 - 0]\frac{2}{7} + [1 - 3]\frac{6}{7}$$
$$= \frac{18 + 10 - 6}{7} = \frac{22}{7}$$

Q.4 (2) Let A = (1,1,1); B = (-2,4,1); C = (-1,5,5) & $D = (AB2,5)\sqrt{9+9+0} = 3\sqrt{2}$, $BC = \sqrt{1+1+16} = 3\sqrt{2}$ and $CD = 3\sqrt{2}$ and $AD = 3\sqrt{2}$. Hence it is a square.

For D'ratio (1, -3, 2), the direction cosine will be

$$\left(\frac{1}{\sqrt{1+9+4}}, \frac{-3}{\sqrt{1+9+4}}, \frac{2}{\sqrt{1+9+4}}\right)$$
$$\Rightarrow \left(\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right)$$

Q.6 (1)

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$$

$$\Rightarrow \cos \gamma = \sqrt{1 - \left(\frac{14}{15}\right)^{2} - \left(\frac{1}{3}\right)^{2}}$$

$$= \sqrt{\frac{8}{9} - \left(\frac{196}{225}\right)} = \pm \frac{2}{15}$$

Q.7 (1)

If
$$\left(\frac{1}{2}, \frac{1}{3}, n\right)$$
 are the d.c's
of line then, $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + n^2 = 1$
 $\Rightarrow n^2 = \frac{23}{36} \Rightarrow n = \frac{\sqrt{23}}{6}$

Q.8

(2)

Since
$$\alpha = \beta = \gamma \implies \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$$

$$\Rightarrow \alpha = \cos^{-1}\left(\pm\frac{1}{\sqrt{3}}\right)$$

So, there are four lines whose direction cosines are

$$\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \\ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$$

Q.9

(1)

$$\theta = \cos^{-1} \left(\frac{3 + 0 - 5}{\sqrt{1 + 1}\sqrt{9 + 16 + 25}} \right)$$
$$= \cos^{-1} \left(\frac{-2}{\pm 10} \right) = \cos^{-1} \left(\frac{1}{5} \right)$$

Q.10 (3)

Projection of [(1, 2, 3) - (6, 7, 7)] along line -15-10+8 -17

$$=\frac{-13-10+8}{\sqrt{17}}=\frac{-17}{\sqrt{17}}$$

Distance =
$$\sqrt{(5^2 + 5^2 + 4^2) - 17} = \sqrt{49} = 7$$

Q.11 (3)

The perpendicular distance of (2, 4, -1) from the line

$$\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$$
 is
{(2+5)² + (4+3)² + (-1-6)

$$-\left[\frac{1(2+5)+4(4+3)-9(-1-6)}{\sqrt{1+16+81}}\right]^{2} = \sqrt{147} - \left(\frac{98}{\sqrt{98}}\right)^{2}$$
$$= \sqrt{147-98} = \sqrt{49} = 7$$

(4) Since 2(1) + 2(2) + (-2)(3) = 0. Hence lines are intersecting at right angles.

Q.12

$$\theta = \cos^{-1} \frac{(-15 - 48 + 65)}{\sqrt{25 + 144 + 169}\sqrt{9 + 16 + 25}}$$
$$= \cos^{-1} \left(\frac{2}{(13\sqrt{2})(5\sqrt{2})}\right) = \cos^{-1} \left(\frac{1}{65}\right)$$

Q.14 (4)

S.D. =
$$\frac{\begin{vmatrix} 6 & 15 & -3 \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix}}{\sqrt{(-4-2)^2 + (12+3)^2 + (6-3)^2}}$$

$$=\frac{270}{\sqrt{270}}=\sqrt{270}=3\sqrt{30}$$

Q.15 (1)

Given lines are,

$$\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1} = r_1 , \text{ (say)}$$

and $\frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4} = r_2 , \text{ (say)}$
 $x = 3r_1 + 5 = -36r_2 - 3 , y = -r_1 + 7 = 3 + 2r_2 \text{ and}$
 $z = r_1 - 2 = 4r_2 + 6$

On solving, we get $x = 21, y = \frac{5}{3}, z = \frac{10}{3}$. Trick: Check through options.

Q.16 (1)

If *l*, m, n are direction ratios of line, then by Al + Bm + Cn = 0 For x - y + z - 5 = 0, 1 - m + n = 0.....(i)

For
$$x - 3y - 6 = 0$$
, $1 - 3m + 0n = 0$(ii)

or
$$\frac{l}{0+3} = \frac{m}{1-0} = \frac{n}{-3+1}$$
 or $\frac{l}{3} = \frac{m}{1} = \frac{n}{-2}$

Direction ratios are (3, 1, -2).

Note : Option (3), may also be an answer but best answer is because in (3) direction cosines are written.

Q.17 (1)

Line joining the points (3, 5, -7) and (-2, 1, 8) is,

$$\frac{x-3}{(-2)-(3)} = \frac{y-5}{(1)-(5)} = \frac{z-(-7)}{8-(-7)}$$

$$\frac{x-3}{-5} = \frac{y-5}{-4} = \frac{z+7}{15} = K, \text{ (Let)}$$

.....(i)
$$\therefore x = -5K+3, y = -4K+5, z = 15K-7$$

$$\therefore \text{ Line (i) meets the yz-plane}$$

$$\therefore -5K+3=0 \implies K = 3/5$$

Put the value of K in x, y, z
So the required point is (0, 13/5, 2).

Q.18 (1,4)

The direction cosines of the normal to the plane are

$$\frac{1}{\sqrt{1^2 + 2^2 + 3^2}}, \frac{2}{\sqrt{1^2 + 2^2 + 3^2}}, \frac{-3}{\sqrt{1^2 + 2^2 + 3^2}}$$

i.e., $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$

But x + 2y - 3z + 4 = 0 can be written as

$$-x - 2y + 3z - 4 = 0$$

Thus the direction cosines are

$$-\frac{1}{\sqrt{4}}, \frac{-2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$$

Q.19 (2)

Equation of plane parallel to y-axis is, ax + bz + 1 = 0

Also
$$2a+1=0 \Rightarrow a=-\frac{1}{2}$$
 and $3b+1=0 \Rightarrow b=-\frac{1}{3}$
 $\therefore 3x+2z=6$

Aliter : Equation of plane $\frac{x}{2} + \frac{z}{3} = 1 \Longrightarrow 3x + 2z = 6$

Q.20 (3)

Equation is
$$\frac{x}{-6} + \frac{y}{3} + \frac{z}{4} = 1$$
 or $-2x + 4y + 3z = 12$
 \therefore Length of perpendicular from origin

$$=\frac{12}{\sqrt{4+16+9}}=\frac{12}{\sqrt{29}}$$

Q.21

(2)

Given, equaiton of plane is passing through the point (-1, 3, 2)

 $\therefore A(x+1) + B(y-3) + C(z-2) = 0 \dots (i)$ Since plane (i) is perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0So, A + 2B + 3C = 0 and 3A + 3B + C = 0

3-Dimensional Geometry

$$\therefore \frac{A}{2-9} = \frac{B}{9-1} = \frac{C}{3-6} = K$$

$$\Rightarrow A = -7K, B = 8K, C = -3K$$
Put the values of A, B and C in (i)
we get, $7x - 8y + 3z + 25 = 0$, which is the required Q.26
equation of the plane.

Q.22 (3)

$$\sqrt{1+1+1} \cdot \left(\frac{1-1+1+k}{\sqrt{3}}\right) = \pm 5$$
 and $k = \pm 5 - 1 = 4, -6$ Q.27

Q.23 (3)

Equation of plane parallel to x - 2y + 2z = 5 is

$$\mathbf{x} - 2\mathbf{y} + 2\mathbf{z} + \mathbf{k} = 0 \qquad \dots \dots (\mathbf{i})$$

Now, according to question, $\frac{1-4+6+k}{\sqrt{9}} = \pm 1$

or $k+3 = \pm 3 \implies k = 0$ or -6

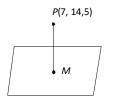
 $\therefore x - 2y + 2z - 6 = 0$ or x - 2y + 2z = 6.

Q.24 (4)

Let M be the foot of perpendicular from (7, 14, 5) to the given plane, then PM is normal to the plane. So, its d.r.'s are 2, 4, -1. Since PM passes through P(7,14,5) and has d.r.'s 2, 4, -1.

Therefore, its equation is $\frac{x-7}{2} = \frac{y-14}{4} = \frac{z-5}{-1} = r$

(Say)



 \Rightarrow x = 2r + 7, y = 4r + 14, z = -r + 5

Let co-ordinates of M be (2r+7, 4r+14, -r+5)

Since M lies on the plane 2x + 4y - z = 2, therefore

$$\Rightarrow 2(2r+7) + 4(4r+14) - (-r+5) = 2$$

 \Rightarrow r = -3

So, co-ordinates of foot of perpependicular are M(1,2,8)

Now, PM = Length of perpendicular from P

$$= \sqrt{(1-7)^2 + (2-14)^2 + (8-5)^2} = 3\sqrt{21}.$$

(1) Obviously, $3 \times 4 + (-2) \times 3 + 2 \times (-k) = 0$ $\Rightarrow 12 - 6 - 2k = 0 \Rightarrow k = 3.$

Q.26 (2)

Equation of required plane is, $\frac{x}{1} + \frac{y}{1} + \frac{z}{1} = 1$ $\Rightarrow x + y + z = 1$

(4) The plane will be $x + 2y + 4z = 2 \times 1 + 3 \times 2 + 4 \times 4$ or x + 2y + 4z = 24.

Q.28 (1)

If plane x - 3y + 5z = d passes through point (1, 2, 4). Then $1-6+20 = d \Rightarrow d = 15$

:. Plane, x - 3y + 5z = 15, $\Rightarrow \frac{x}{15} + \frac{y}{-5} + \frac{z}{3} = 1$

Hence length of intercept cut by it on the axes (x, y, z) are respectively (15, -5, 3).

Q.29 (3)

 $\frac{5x}{60} - \frac{3y}{60} + \frac{6z}{60} = 1 \implies \frac{x}{12} - \frac{y}{20} + \frac{z}{10} = 1$ Hence, the intercepts are (12, -20, 10).

Q.30 (1)

Equation of plane passing through the point (1, 2, 3) is $A(x-1)+B(y-2)+C(z-3)=0\quad(i)$

Plane (i) is parallel to plane x + 2y + 5z = 0

 $\therefore (x-1)+2(y-2)+5(z-3)=0$ is the required plane.

Q.31 (2)

Equation of plane passing through the intersection of given planes, is

$$x + 2y + 3z + 4$$
 + $\lambda(4x + 3y + 2z + 1) = 0$ (i)

Plane (i) is passing through origin i.e.,
$$(0, 0, 0)$$

$$\therefore 4 + \lambda = 0 \implies \lambda = -4$$

Put the value of λ in (i),

$$-15x - 10y - 5z = 0 \implies 3x + 2y + z = 0.$$

Q.32 (1)

Distance of plane from origin

$$= \frac{d}{\sqrt{a^2 + b^2 + c^2}} = \frac{14}{\sqrt{6^2 + 3^2 + 2^2}} = \frac{14}{\sqrt{49}} = \frac{14}{7} = 2$$

Q.33

(2) Any plane passing through (1, 1, 1) is a(x-1)+b(y-1)+c(z-1)=0(i) Plane (i) is also passing through (1, -1, -1) $\therefore a.0+b(-2)+c(-2)=0$ or, 0.a-2b-2c=0or, 0.a-b-c=0(ii) Plane (i) is perpendicular to 2x - y + z + 5 = 0So, 2a-b+c=0(iii) From (ii) and (iii), a = b = 1, c = -1Substituting in (i) we have x + y - z - 1 = 0.

Q.34 (1)

The equation of the plane through the intersection of the plane x + y + z = 1 and 2x + 3y - z + 4 = 0 is $(x + y + z - 1) + \lambda(2x + 3y - z + 4) = 0$ or $(1 + 2\lambda)x + (1 + 3\lambda)y + (1 - \lambda)z + 4\lambda - 1 = 0$ Since the plane parallel to x-axis,

$$\therefore \quad 1+2\lambda=0 \Longrightarrow \lambda=-\frac{1}{2}$$

Hence, the required equation will be y - 3z + 6 = 0.

Q.35 (4)

Equation of any plane passing through (0, 1, 2) is a(x-0) + b(y-1) + c(z-2) = 0(i) Plane (i) passes through (-1, 0, 3), then a(-1-0) + b(0-1) + c(3-2) = 0 \Rightarrow $-a-b+c=0 \Rightarrow a+b-c=0$(ii) Plane (i) is perpendicular to the plane 2x + 3y + z = 5, then 2a + 3b + c = 0(iii) Solving (ii) and (iii), we get a = -4k, b = 3k, c = -kPutting these values in (i), -4k(x) + 3k(y-1) - k(z-2) = 0 $\Rightarrow -4x + 3y - 3 - z + 2 = 0$ $\Rightarrow -4x + 3y - z - 1 = 0$ $\Rightarrow 4x - 3y + z + 1 = 0$ (4) $\frac{x}{1} = \frac{y-1}{2} = \frac{z+2}{3} = r$, (say) So, x = r, y = 2r + 1, z = 3r - 2 $\therefore 2r + 3(2r + 1) + (3r - 2) = 0 \implies r = \frac{-1}{11}$

Hence, $x = \frac{-1}{11}, y = \frac{9}{11}, z = -\frac{25}{11}$

Q.37 (4)

Equation of plane passing through the point (1, 0, -1) is, a(x-1)+b(y-0)+c(z+1)=0(i) Also, plane (i) is passing through (3, 2, 2) \therefore a (3-1) + b (2-0) + c (2+1) = 0 2a + 2b + 3c = 0.....(i) or Plane (i) is also parallel to the line $\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z-2}{3}$ $\therefore 2a - 2b + 3c = 0$(ii) From (i) and (ii), $\frac{a}{-3} = \frac{b}{0} = \frac{c}{2}$ Therefore, the required plane is, -3(x-1)+0(y-0)+2(z+1)=0-3x + 2z + 5 = 0. or

Q.38 (2)

Line is $\frac{x+3}{3} = \frac{y-2}{-2} = \frac{z+1}{1} = \lambda$ (Let) $x = 3\lambda - 3; y = -2\lambda + 2; z = \lambda - 1$ line intersects plane, therefore, $4(3\lambda - 3) + 5(-2\lambda + 2) + 3(\lambda - 1) - 5 = 0$ $\Rightarrow \lambda = 2$. So, x = 3; y = -2; z = 1. **Trick** : Since the point (3, -2, 1) satisfies both the

Trick : Since the point (3, -2, 1) satisfies both the equations.

Q.39 (3)

The equation of plane containing the line

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$$
 is
 $a(x+1) + b(y-3) + c(z+2) = 0$ (i)
where $-3a + 2b + c = 0$ (ii)
This passes through (0, 7, -7)
 \therefore $a + 4b - 5c = 0$ (iii)
From (ii) and (iii), $\frac{a}{-14} = \frac{b}{-14} = \frac{c}{-14}$ or $\frac{a}{1} = \frac{b}{1} = \frac{c}{1}$
Thus, the required plane is $x + y + z = 0$.

Q.40 (2)

Angle between the plane and line is

 $\sin \theta = \frac{aa' + bb' + cc'}{\sqrt{a^2 + b^2 + c^2}\sqrt{a'^2 + b'^2 + c'^2}}$ Here, $aa' + bb' + cc' = 2 \times 3 + 3 \times 2 - 4 \times 3 = 0$ $\therefore \sin \theta = 0 \implies \theta = 0^\circ.$

Q.36

JEE-MAIN OBJECTIVE QUESTIONS

- Q.1 (2) $x^{2} + y^{2} + y^{2} + z^{2} + z^{2} + x^{2} = 36$ $2(x^{2} + y^{2} + z^{2}) = 36$ $\sqrt{x^{2} + y^{2} + z^{2}} = 3\sqrt{2}$
- **Q.2** (3)

 $PA^{2} - PB^{2} = 2k^{2}$ $(x - 3)^{2} + (y - 4)^{2} + (z - 5)^{2} - (x + 1)^{2} - (y - 3)^{2} - (z + 7)^{2}$ $= 2k^{2}$ $\implies 8x + 2y + 24z + 9 + 2k^{2} = 0$

Q.3 (2)

 $cos^2\alpha + cos^2\beta + cos^2\gamma = 1$

 $\therefore \gamma = 90^{\circ}$

Q.4 (4)

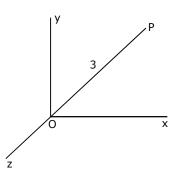
$$\ell = \cos \alpha = \frac{1}{\sqrt{2}}$$
$$\mu = \cos \beta = \frac{1}{\sqrt{2}}$$
$$\ell^2 + m^2 + n^2 = 1$$
$$n = 0 \Rightarrow \cos \gamma = 0$$

$$\Rightarrow \gamma = \frac{\pi}{2}$$

(3) $\cos^{2} \theta + \cos^{2} \beta + \cos^{2} \theta = 1$ $2\cos^{2} \theta = 1 - \cos^{2} \beta = \sin^{2} \beta$ $2\cos^{2} \theta = 3 \sin^{2} \theta = 3 - 3 \cos^{2} \theta$ $\cos^{2} \theta = 3/5$

Q.6 (1)

Q.5



D.R. of OP = (1, -2, -2)

D.C. of OP =
$$\left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right)$$

Vector
$$\overrightarrow{OP} = |\overrightarrow{OP}| \left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right) = (1, -2, -2)$$

(1) Dr's of AB = 1, -3 - α , 0 Dr's of CD = 3 - β , 2, -2 AB \perp CD $\therefore 1(3 - \beta) + (-3 - \alpha) \cdot 2 + 0 = 0$ $3 - \beta - 6 - 2\alpha = 0$ $2\alpha + \beta + 3 = 0$ $\therefore \alpha = -1, \beta = -1$

Q.8

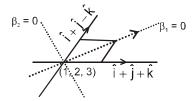
Q.7

Dr's of bisector

(1)

$$\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}+\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}=\lambda(\hat{i}+\hat{j})$$

Hence Dr's are $\lambda, \lambda, 0 \ (\lambda \in R)$



Equation of bisector

$$\frac{x-1}{\lambda} = \frac{y-2}{\lambda} = \frac{z-3}{0}$$
$$\frac{x-1}{2} = \frac{y-2}{2}; z-3 = 0$$

(4) $a_1a_2 + b_1b_2 + c_1c_2 = 0$ \therefore lines are perpendicular

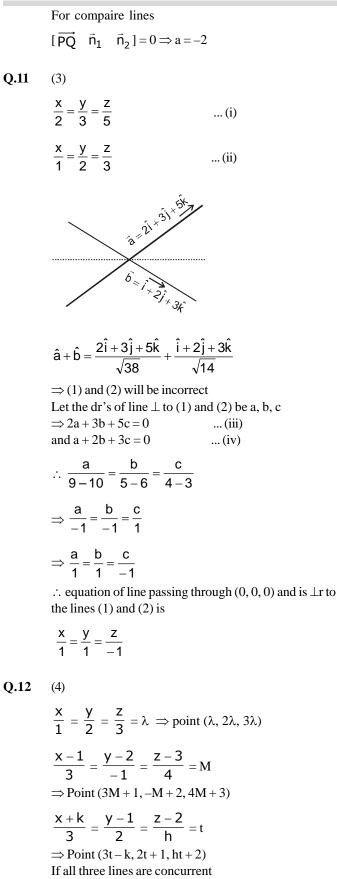
Q.10

(1)

$$\vec{n}_{1} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 1 & 2 & 1 \end{vmatrix} = -5 \hat{i} + 5 \hat{k}$$

$$\vec{n}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ a & 1 & -1 \end{vmatrix} = -2\hat{i} + (2+3a)j + (2+a)\hat{k}$$

p (0, -5, -3); R(0, -1/5, -3/5)



 $\lambda = 3\mu + 1; 2\lambda = -\mu + 2; 3\lambda = 4\mu + 3$

 $\lambda = 1 \Longrightarrow \mu = 1$

 $\begin{array}{ll} 3t-\!k=1 \ ; & 2t+\!1=2 \Longrightarrow k=\frac{1}{2} \ \Longrightarrow t=\frac{1}{2} \\ ht+\!2=\!3 \\ ht=\!1 \Longrightarrow h=\!2 \end{array}$

A(a, b, c) B(a', b', c')

Line $\overrightarrow{AB} = (a, b, c) + \lambda(a' - a, b' - b, c' - c)$ = $(a + \lambda a', b + \lambda b', c + \lambda c') - \lambda(a, b, c)$ It will passes through origin when $a + \lambda a' = b + \lambda b' = c + \lambda c' = 0$

$$\Rightarrow \frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

Q.14 (2)

 $x = y + a = z \qquad \dots(1)$ $x + a = 2y = 2z \qquad \dots(2)$ we have option (2) & (3) but if we look at option B it will satisfy the given equation

Q.15 (3)

$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k};$$

$$\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$$
A(2,3,4), B(1,4,5),
D.R. (1,1,-k), D.R. (k,2,1)
Coplanar then = $\begin{vmatrix} -1 & 1 & 1 \\ 1 & 1 & -k \\ k & 2 & 1 \end{vmatrix} = 0$

$$\Rightarrow k = 0 \text{ or } k = -3$$
Q.16 (2)
$$\vec{a} = (2,5,-3)$$

$$\vec{b} = (-1, 8, 4)$$

$$\cos \theta = \frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{b}|} = \frac{-2+40-12}{\sqrt{38}\sqrt{81}} = \frac{26}{9\sqrt{38}}$$

$$\Rightarrow \theta = \cos^{-1} \left(\frac{26}{9\sqrt{38}}\right)$$
Q.17 (2)
$$\operatorname{dir}^{n} \text{ of line} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & \frac{1}{3} & \frac{2}{4} \end{vmatrix} = -2\hat{i} + \hat{k}$$

DR' & = (-2, 0, 1)

 $(\vec{n}_1 \times \vec{n}_2) \times \hat{k} = (-2\hat{i} + \hat{k}) \times \hat{k} = 2\hat{j}$ \Rightarrow distance = 2

Q.18 (1)

a(x-2) + b(y+3) + c(z-1) = 0Dr's of the line joining (3, 4, -1) & (2, -1, 5) are -1, -5, 6 normal of the plane and above line are parallel ∴ equation of the plane -1(x-2) - 5(y+3) + 6(z-1) = 0 $\Rightarrow x + 5y - 6z + 19 = 0$

Q.19 (4)

(xy + yz) = 0x + z = 0 and y = 0Two perpendicular plane.

Q.20 (1)

x + 2y + 2z = 5 $\overrightarrow{n_1} = (1, 2, 2)$

$$3x + 3y + 2z = 8$$
 $\vec{n}_2 = (3, 3, 2)$

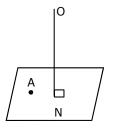
Normal vector of plane =
$$\vec{n}_1 \times \vec{n}_1 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 3 & 3 & 2 \end{vmatrix}$$

$$= -2\hat{i} + 4\hat{j} + 3\hat{k}$$

Equation of plane $-2x + 4y - 3z = k$
passing through $(1, -3, -2)$ $k = -8$
 $-2x + 4y - 3z = -8$
 $2x - 4y + 8z - 8 = 0$

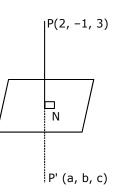
Q.21 (1)

Let N be foot of poerpendicular = (α, β, γ) N (α, β, γ)



A (1, 2, 3) Equation of plane willk be $\alpha x + \beta y + \gamma z = k$ passing through (1, 2, 3) $\Rightarrow k = \alpha + 2\beta + 3\gamma$ $\alpha x + \beta y + \gamma z = \alpha + 2\beta + 3\gamma$ this plane passes through (α , β , γ) also $\alpha^2 + \beta^2 + \gamma^2 = \alpha + 2\beta + 3\gamma$ $x^2 + y^2 + z^3 - x - 2y - 3z = 0$ **Q.22** (2) N (α, β, γ) 3x - 2y - z = 9

 $\frac{\alpha - 2}{3} = \frac{\beta + 1}{-2} = \frac{\gamma - 3}{-1} = \lambda$ $\alpha = 3\lambda + 2, \beta = -2\lambda - 1, \gamma = -\lambda + 3$ N point lies on the plane $3(3\lambda + 2) - 2(-2\lambda + 1) - (-\lambda + 3) = 9$



$$\Rightarrow \lambda = \frac{2}{7}$$

$$N\left(\frac{20}{7}, \frac{-11}{7}, \frac{19}{7}\right)$$

$$N = \frac{P + P'}{2} \Rightarrow P^{1} = 2N - P$$

$$\Rightarrow P^{1}\left(\frac{26}{7}, \frac{-15}{7}, \frac{17}{7}\right)$$

 $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ Use pases through P(2, -1, 2) point P So P₀I of line and plane is P (2, -1, 2) (-1, -5, -10) so PQ = 13

Q.24 (1)

$$\frac{\alpha - 1}{2} = \frac{\beta + 2}{3} = \frac{\gamma - 3}{-6} = \lambda$$

$$P(2, -1, 3)$$

$$d / (2, 3, -6)$$

$$Q(\alpha, \beta, \gamma) / (2, 3, -6)$$

$$\label{eq:alpha} \begin{split} \alpha &= 2\lambda + 1, \, b = 3l-2, \, \gamma = -6\lambda + 3 \\ (\alpha,\,\beta,\,\gamma) \text{ lie on the plane } x + y + z \! = 5 \end{split}$$

$$\Rightarrow \lambda = \frac{1}{7}$$

$$Q\left(\frac{9}{7}, \frac{-11}{7}, \frac{15}{7}\right)$$

$$d = PQ = 1$$

Q.25 (1)

Let the Eqⁿ of plane

$$\frac{\mathbf{x}}{\alpha} + \frac{\mathbf{y}}{\beta} + \frac{\mathbf{z}}{\gamma} = 1$$

passes through (a, b, c)

$$\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 1$$

common point will be (α,β,γ) so locus

$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 1$$

Q.26 (1)

Let the equation of planes

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \& \frac{x}{a_1} + \frac{y}{b_1} + \frac{z}{c_1} = 1$$

perpendicular distance from orign will be same $p_1 = p_2$

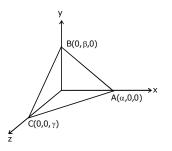
$$\frac{\begin{vmatrix} -1\\ \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} \end{vmatrix}}{\begin{vmatrix} -1\\ \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} \end{vmatrix}} = \frac{\begin{vmatrix} -1\\ \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} \end{vmatrix}$$
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a^2_1} + \frac{1}{b^2_1} + \frac{1}{c^2_1}$$

Q.27 (4)

Direction of line = (1, 2, 2) normal vector of plane = (2, -1, $\sqrt{\lambda}$)

$$\sin \theta = \frac{2 - 2 + 2\sqrt{\lambda}}{\sqrt{1 + 4} + 4\sqrt{4} + 1 + \lambda} = \frac{1}{3}$$
$$4\lambda = 5 + \lambda$$
$$\lambda = \frac{5}{3}$$

Q.28 (3)



Let the equation of plane :

$$\frac{\mathbf{x}}{\alpha} + \frac{\mathbf{y}}{\beta} + \frac{\mathbf{z}}{\gamma} = 1 \qquad \dots (1)$$

$$\frac{\alpha}{3} = a \implies \alpha = 3a$$
$$\frac{\beta}{3} = b \implies \alpha = 3a$$
$$\frac{\gamma}{3} = c \implies \gamma = 3c$$
$$\frac{x}{3a} + \frac{y}{3b} + \frac{z}{3c} = 1$$
$$\implies \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$$

Q.29 (1) Ley the equation of plane

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
given that $p = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}}$
or $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{p^2}$ (1)

B(0, b, 0)

A (a, 0, 0)

C(0, 0, c)

Let centroid (u, v, w)

.

Q.30

Q.31

(2)

= 10

(1)

Let Point P (α , β , γ)

Given that

$$v = \frac{b}{4} \implies b = 4v$$

 $w = \frac{c}{4} \implies c = 4w$

$$\frac{1}{16u^2} + \frac{1}{16v^2} + \frac{1}{16w^2} = \frac{1}{p^2}$$
$$\frac{1}{u^2} + \frac{1}{v^2} + \frac{1}{w^2} = \frac{16}{p^2}$$
$$u^{-2} + v^{-2} + z^{-2} = 16p^{-2}$$

 $\begin{array}{l} 2\alpha^2+2\beta^2+2\gamma^2+6=0\\ \alpha^2+\beta^2+\gamma^2=2 \ \Longrightarrow \ x^2+y^2+z^2=2 \end{array}$

 $\stackrel{\rightarrow}{\mathsf{AB}}=(x,-y,0),\;\stackrel{\rightarrow}{\mathsf{AC}}=(x,0,-2),$

If A, B, C, D are coplanar points then

 $\overrightarrow{\mathsf{AD}} = (x - 1, -1, -1)$

 $\begin{bmatrix} \overrightarrow{AB} & \overrightarrow{AC} & \overrightarrow{AD} \end{bmatrix} = 0$

 $(\alpha - 1^2) + (\alpha + 1)^2 + (\beta - 1) + (\beta + 1)^2 + (\gamma - 1)^2 + (\gamma + 1)^2$

A (2-x, 2, 2) B (2, 2-y, 2) C (2, 2, 2-z) D(1, 1, 1)

 $\begin{vmatrix} x & -y & 0 \\ x & 0 & -2 \\ x -1 & -1 & -1 \end{vmatrix} = 0 \qquad \Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$

$$\sqrt{2a^2 + c^2} = 2a$$

$$2a^2 + c^2 = 4a^2$$

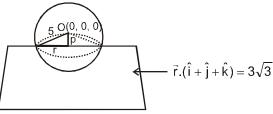
$$2a^2 = c^2$$

$$\boxed{c = \sqrt{2}a}$$

$$b = a; c = \sqrt{2}a$$

$$a: b: c = (1:1:\sqrt{2})$$

Q.33 (2)



$$x + y + z - 3\sqrt{3} = 0$$
$$p = \left| \frac{-3\sqrt{3}}{\sqrt{3}} \right| = 3$$
$$\Rightarrow r = 4$$

$$A\left(\frac{27\lambda + 12}{\lambda + 1}, \frac{-9\lambda - 4}{\lambda + 1}, \frac{18\lambda + 8}{\lambda + 1}\right)$$

$$B\left(\begin{array}{c} (0, 0, 0) \\ (12, -4, 8) \end{array}\right) A (27, -9, 18)$$

$$\therefore \left(\frac{27\lambda+12}{\lambda+1}\right)^2 + \left(\frac{-9\lambda-4}{\lambda+1}\right)^2 + \left(\frac{18\lambda+8}{\lambda+1}\right)^2 = 504$$

Solving above we get $9\lambda^2 = 4$

$$\lambda = \pm \frac{2}{3}$$

Q.35 (3)

$$\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-1}{-1} = \lambda$$

(3\lambda+2, 2\lambda-1, 1-\lambda)
z=0 \Rightarrow \lambda = 1

$$p = \left| \frac{-3\sqrt{3}}{\sqrt{3}} \right| = 3$$
$$\implies r = 4$$

$$A\left(\frac{\lambda+1}{\lambda+1}, \frac{\lambda+1}{\lambda+1}, \frac{\lambda+1}{\lambda+1}\right)$$

$$B\left(\frac{(0, 0, 0)}{(12, -4, 8)} \right)$$

Which lies on the sphere

$$\left(\frac{27\lambda+12}{\lambda+1}\right)^2 + \left(\frac{-9\lambda-4}{\lambda+1}\right)^2 + \left(\frac{18\lambda+8}{\lambda+1}\right)^2 = 504$$

39

Q.32 (2)

$$a(x-1)+b(y-0)+c(z-0)=0$$
 (1,0,0)
 $\Rightarrow ax+by+cz-a=0$ (0,1,0)
 $0+b+0-a=0$
 $b=a$

 \angle between planes = \angle between normal x + y = 3, (1, 1, 0)(a, b, c)

$$\cos \frac{\pi}{4} = \frac{l(a) + l(b) + 0(c)}{\sqrt{1^2 + 1^2 + 0^2} \sqrt{a^2 + b^2 + c^2}}$$
$$\frac{1}{\sqrt{2}} = \frac{a + b}{\sqrt{2}\sqrt{a^2 + b^2 + c^2}}$$
$$\boxed{b = a}$$

$$\begin{aligned} xy &= c^2 \\ (3\lambda + 2) (2\lambda - 1) &= c^2 \\ put \lambda &= 1 \implies c^2 = 5 \implies c = \pm \sqrt{5} \end{aligned}$$

JEE-ADVANCED OBJECTIVE QUESTIONS

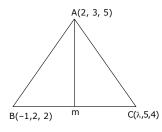
Q.1 (C)

Distance =
$$\sqrt{x^2 + y^2 + z^2}$$

= $\sqrt{(2t)^2 + (4t)^2 + (4t)^2}$
= 6t
t = 10
Distance = 60 km

Q.2

(C) A (2, 3, 5) B(-1, 2, 2) C(λ, 5, 4)



$$m\left(\frac{\lambda-1}{2},\frac{7}{2},\frac{\mu+2}{2}\right)$$

D.R> of median through A :

$$\left(\frac{\lambda - 1}{2} - 2\frac{7}{2} - 3, \frac{\mu + 2}{2} - 5\right)$$
$$\left(\frac{\lambda - 5}{2}, \frac{1}{2}, \frac{\mu - 8}{2}\right)$$

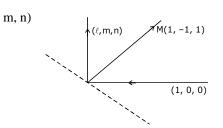
As the median through A is equally inclined to He axis \therefore D.R.'s will be and equal to k.

$$\frac{\frac{\lambda-5}{2}}{k} = \frac{1}{2k} = \frac{\frac{\mu-8}{2}}{k} \implies \lambda = 6 \text{ and } \mu = 9$$

Q.3 (D)

The DC's of incident RAy arew (1, 0, 0). Let the D.C's of reflectd ray be (λ,m,n)

 \Rightarrow The D.R.'s of the normal to polane of mirror is (l-1,



$$\frac{\ell - 1}{1} = \frac{m}{-1} = \frac{n}{1}$$

$$\ell = \lambda + 1, m = -\lambda, n = \lambda$$

$$\ell^{2} + m^{2} + n^{2} = 1$$

$$(\lambda + 1)^{2} + \lambda^{2} + \lambda^{2} = 1$$

$$3\lambda^{2} + 2\lambda = 0$$

$$\lambda = -2/3$$
D.C's of reflected Ray $\left(\frac{1}{3}, \frac{2}{3}, \frac{-2}{3}\right)$
or $\left(-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$

Q.4

(A) Let P be the centroid

:
$$PA_1 = \frac{1}{3} AA_1, PB_1 = \frac{1}{3} BB_1 \text{ and } PC_1 = \frac{1}{3} CC_1$$

: $\frac{PA_1}{AA_1} + \frac{PB_1}{BB_1} + \frac{PC_1}{CC_1} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$

Q.5

(B)

Since three lines are mutually perpendicular
$$\begin{split} \ell_1\ell_2 + m_1m_2 + n_1n_2 &= 0 \ ; \ \ell_2\ell_3 + m_2m_3 + n_2n_3 &= 0 \\ \ell_3\ell_1 + m_3m_1 + n_3n_1 &= 0 \\ Also \ \ell_1^2 + m_1^2 + n_1^2 &= 1; \ \ell_2^2 + m_2^2 + n_2^2 &= 1; \\ (\ell_1 + \ell_2 + \ell_3)^2 + (m_1 + n_2 + m_3)^2 \end{split}$$

+
$$(n_1 + n_2 + n_3)^2$$

= $(\Sigma \ell_1^2 + \Sigma \ell_2^2 + \Sigma \ell_1 \ell_3^2 + 2\Sigma \ell_1 \ell_2$

$$+ 2\Sigma \ell_2 \ell_3 + 2\Sigma \ell_3 \ell_1) = 3 \Rightarrow (\ell_1 + \ell_2 + \ell_3)^2 + (m_1 + m_2 + m_3)^2$$

 $+ (n_1 + n_2 + m_3)^2 = 3$ Hence direction cosines of OP are

$$\left(\frac{\ell_1 + \ell_2 + \ell_3}{\sqrt{3}}, \frac{m_1 + m_2 + m_3}{\sqrt{3}}, \frac{n_1 + n_2 + n_3}{\sqrt{3}}\right)$$

Q.6 (A)

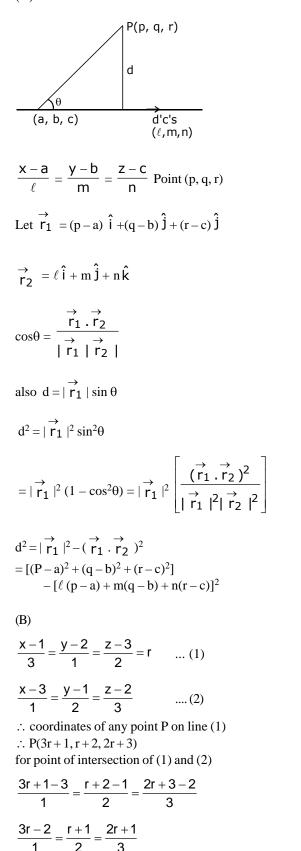
Direction ratio's of line = (-2, 1, 2)

Direction cosine's = $\left(\frac{-2}{3}, \frac{1}{3}, \frac{2}{3}\right)$

 $\cos\theta = \frac{-2}{3}, \cos\theta_2 = \frac{1}{3}; \cos\theta_3 = \frac{2}{3}$ $\cos2\theta_1 + \cos2\theta_2 + \cos2\theta_3$ $= 2[\cos^2\theta_1 + \cos^2\theta_2 + \cos^2\theta_3] - 3$ $= 2\left[\frac{4}{3} + \frac{1}{3} + \frac{4}{3}\right] - 3 = -1$

Q.7 (A)

Q.8



 \therefore point of intersection is (4, 3, 5)

 \therefore r = 1

 $\therefore \text{ the equation of required plane}$ 4(x - 4) + 3(y - 3) + 5(z - 5) = 04x + 3y + 52 = 50

 $2x - y + 3z + 4 = 0 = ax + y - z + 2 \dots (1)$: equation of plane through (1) is $(2x - y + 3z + 4) + \lambda(ax + y - z + 2) = 0$ $x(2 + a\lambda) + y(\lambda - 1) + z(3 - \lambda) + (4 + 2\lambda) = 0 \dots (2)$ $x - 3y + z = 0 = x + 2y + 2 + 1 \dots (3)$: equation of plane passing through (3) is $(x - 3y + z) + \mu(x + 2y + z + 1) = 0$ $x(1 + \mu) + y(2\mu - 3) + z(\mu + 1) + \mu = 0 \dots (4)$ if lines (1) and (3) are coplanar, then

$$\frac{2+a\lambda}{\mu+1} = \frac{\lambda-1}{2\mu-3} = \frac{3-\lambda}{\mu+1} = \frac{4+2\lambda}{\mu}$$

Solving this we get $\lambda = -1$, $\mu = 1$
 \therefore $a = -2$

x = ay + b, z = cy + dand x = a'y + b', z = c'h + d'

$$\frac{x-b}{a} = y = \frac{z-d}{c}$$

and
$$\frac{x-b'}{a'} = y = \frac{z-d'}{c'}$$

poer pendicular then
$$aa' + 1 + cc' = 0$$

Q.11 (A)

Angle between two faces is equal to the angle between

the normals $\overrightarrow{n_1}$ and $\overrightarrow{n_2}$. $\overrightarrow{n_1} \rightarrow \text{normal of OAB}$ $\overrightarrow{n_2} = \text{normal of ABC}$ $\overrightarrow{n_1} = \overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix}$ $= 5 \hat{i} - \hat{j} - 3 \hat{k}$...(1) $\overrightarrow{n_2} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ -2 & -1 & 1 \end{vmatrix}$ $= \hat{i} - 5 \hat{j} - 3 \hat{k}$...(2) $\cos \theta = \frac{\overrightarrow{n_1 \cdot n_2}}{|n_2|||n_2|} = \frac{19}{35} \Rightarrow \theta = \cos^{-1}\left(\frac{19}{35}\right)$ Q.12

(D) 2x - y + z = 6 ... (1) x + y + 2z = 7 ... (2) x - y = 3 ... (3) Let the equation of plane $\perp r$ to (2) and (3) be ax + by + cz + d = 0 (4) $\therefore a + b + 2c = 0$ a - b + 0.c = 0

$$\therefore \frac{a}{2} = \frac{b}{2} = \frac{c}{-1-1}$$

dr's of normal to the plane $\bot r \,$ to (2) and (3) are 2, 2, – 2

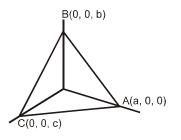
now angle between both planes is $\cos\theta =$

$$\frac{(2)(2) + 2(-1) + (-2)(1)}{3.2\sqrt{3}} = 0$$

$$\Rightarrow \theta = 90^{\circ}$$

Q.13 (A)

Let the equation of plane be



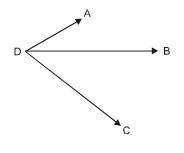
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

as (α , β , γ) is centroid

$$\therefore \alpha = \frac{a}{3}; \ \beta = \frac{b}{3} \text{ and } \gamma = \frac{c}{3}$$
$$\therefore \text{ equation of plane } \frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$$

(A) A (2 - x, 2, 2), B (2, 2 - y, 2), C (2, 2, 2 - z), D(1, 1, 1) $\overrightarrow{DA} = (1 - x)\hat{i} + \hat{j} + \hat{k}$

$$\overrightarrow{DB} = \hat{i} + (1 - y)\,\hat{j} + \hat{k}$$



 $\overrightarrow{\text{DC}} = \hat{i} + \hat{j} + (1 - z) \hat{k}$

If four points are coplanar then $[\overrightarrow{DA}, \overrightarrow{DB}, \overrightarrow{DC}] = 0$

$$\Rightarrow \begin{vmatrix} 1-x & 1 & 1 \\ 1 & 1-y & 1 \\ 1 & 1-z \end{vmatrix} = 0$$

$$c_1 \rightarrow c_1 - c_2 \text{ and } c_2 \rightarrow c_2 - c_3$$

$$\Rightarrow \begin{vmatrix} -x & 0 & 1 \\ y & -y & 1 \\ 0 & z & 1-z \end{vmatrix} = 0$$

$$\therefore -x (-y + yz - z) + 1 (+yz) = 0$$

$$xy - xyz + xz + yz = 0$$

$$xy + yz + zx = xyz$$

$$\therefore \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$$

Q.15 (C)

Equation of lines :

$$\frac{x-2}{3-2} = \frac{y+3}{-4+3} = \frac{z-1}{-5-1}$$

$$\frac{x-2}{1} = \frac{y+3}{-1} = \frac{z-1}{-6} = \frac{z-1}{-6} = \lambda$$
Points ($\lambda + 2, -\lambda - 3, -6\lambda + 1$)
Point will be on given plane
$$2(\lambda + 2) + (-\lambda - 3) + (-6\lambda + 1) = 7$$

$$\Rightarrow \lambda = -1$$
Intersection point (1, -2, 7)

Q.16 (B)

Let the point be $p(\alpha, \beta, \gamma)$ $\therefore (\alpha - 1)^2 + (\alpha + 1)^2 + (\beta - 1)^2 + (\beta + 1)^2 + (\gamma - 1)^2 + (\gamma + 1)^2 = 10$ $\Rightarrow 2(\alpha^2 + \beta^2 + \gamma^2) = 4$ $\therefore \alpha^2 + \beta^2 + \gamma^2 = 2$ \therefore required locus is $x^2 + y^2 + z^2 = 2$

Q.17 (D)

$$|\overrightarrow{AC}| = 2; |\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}| = 4\sqrt{2}$$
$$|\overrightarrow{a} - \overrightarrow{b}| = 2$$

$$\cos \theta = \frac{\left(\frac{\vec{b}}{2} - \vec{a}\right) \cdot \left(\frac{\vec{b} + \vec{c}}{2}\right)}{\left|\frac{\vec{b}}{2} - \vec{a}\right| \left|\frac{\vec{b} + \vec{c}}{2}\right|} = \frac{\left(\vec{b} - 2\vec{a}\right) \cdot \left(\vec{b} + \vec{c}\right)}{\left|\vec{b} - 2\vec{a}\right| \left|\vec{b} - \vec{c}\right|}$$

put all the values $\cos \theta = \frac{1}{\sqrt{2}}$

Q.18 (A)

required plane $(x - y + 2z - 3) + \lambda(4x + 3y - z - 1) = 0$ $x(4\lambda + 1) + y(3\lambda - 1) + z(2 - \lambda) - (3 + \lambda) = 0 \dots (1)$ Now we can observe that from the given options equation (1) can represent only (A)

Q.19 (C)

Equation of any sphere passes through the circle x^2 + $v^2 = 4$, z = 0 is $x^2 + y^2 - 4 + \lambda z = 0$

its centre is
$$\left(0, 0, -\frac{\lambda}{2}\right)$$
 and radius = $\sqrt{\frac{\lambda^2}{4} + 4}$

distance of
$$\left(0, 0, -\frac{\lambda}{2}\right)$$
 from the plane $x + 2y + 2z = Q.2$

0 is
$$\left| \frac{2\left(-\frac{\lambda}{2}\right)}{\sqrt{1+4+4}} \right| = \frac{|\lambda|}{3}$$

Now
$$\left(\sqrt{\frac{\lambda^2}{4}+4}\right)^2 - \left(\frac{|\lambda|}{3}\right)^2 = (3)^2$$

 $\therefore \lambda = \pm 6$ Since centre lies on positive z-axis $\therefore \lambda = -6$ and equation of the sphere is $x^2 + y^2 + z^2 - 6z - 4 = 0$

Q.20 **(B)**

Let the point P(x, y, z)Asking minimum value of OP² $\Rightarrow \perp^{r}$ distance of origin from plane

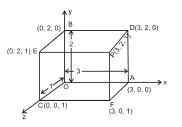
$$d = \left| \frac{P}{\sqrt{a^2 + b^2 + c^2}} \right| \implies d^2 = \frac{P^2}{\Sigma a^2}$$

.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q.1 (A, B, C)dr's of \overrightarrow{OP} are 3, 2, 1 dr's of \overrightarrow{FB} are -3, 2, -1dr's of \overrightarrow{AE} are -3, 2, 1



dr's of
$$\overrightarrow{CD}$$
 are 3, 2, -1

$$\cos \theta_1 = \left| \frac{-9+4-1}{14} \right| = \frac{3}{7}, \cos \theta_2 = \left| \frac{-9+4+1}{14} \right| = \frac{2}{7}$$

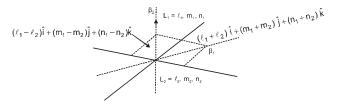
$$\cos\theta_3 = \left|\frac{9+4-1}{14}\right| = \frac{6}{7}$$

So angles are $\cos^{-1}\frac{2}{7}$, $\cos^{-1}\frac{3}{7}$, $\cos^{-1}\frac{6}{7}$

(B, D) $\cos\theta = \ell_1\ell_2 + m_1m_2 + n_1n_2$ Dc's of β_1 (bisector)

$$\frac{\ell_1 + \ell_2}{\sqrt{(\ell_1 + \ell_2)^2 + (m_1 + m_2)^2 + (n_1 + n_2)^2}}$$
$$= \frac{\ell_1 + \ell_2}{\sqrt{2 + 2(\ell_1 \ell_2 + m_1 m_2 + n_1 n_2)}}$$

$$= \frac{\ell_1 + \ell_2}{\sqrt{2 + 2\cos\theta}} = \frac{\ell_1 + \ell_2}{2\cos\theta/2}$$



 $m_1 + m_2$ $n_1 + n_2$ Similarly $\overline{2\cos\theta/2}$, $\overline{2\cos\theta/2}$ Similarly Dc's for bisector β_2

$$\frac{\ell_1 - \ell_2}{2\sin\frac{\theta}{2}} , \frac{m_1 - m_2}{2\sin\frac{\theta}{2}} , \frac{n_1 - n_2}{2\sin\frac{\theta}{2}}$$

Q.3 (B,C)

$$\hat{n} = \pm \left(\frac{-3,2,6}{7}\right) = \pm \left(\frac{-3}{7}, \frac{2}{7}, \frac{6}{7}\right)$$
$$- \frac{3x}{7} + \frac{2y}{7} + \frac{6z}{7} = 7$$

$$-3x + 2y + 6z - 49 = 0$$

and
$$\frac{3x}{7} - \frac{2y}{7} - \frac{6z}{7} = 7$$
$$3x - 2y - 6z - 49 = 0$$

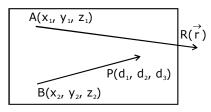
Q.4 (A,D)

$$\frac{x-1}{2} = \frac{y+3}{1} = \frac{z+1}{-2}$$
Direction of line $\overrightarrow{b} = (2, -1, -2)$
(A) Normal of plane $\overrightarrow{n} = (2, 2, 1)$ $\overrightarrow{b} \cdot \overrightarrow{n} = 4 - 2 - 2 = 0$
(B) $\overrightarrow{b} \cdot \overrightarrow{n} = 2 - 2 + 4 = 4$
(C) $\overrightarrow{b} \cdot \overrightarrow{n} = 4 + 2 - 2 = 4$
(D) $\overrightarrow{b} \cdot \overrightarrow{n} = 2 + 2 - 4 = 0$

Q.5 (A,B)

$$\begin{bmatrix} AR & AB & P \end{bmatrix} = 0$$

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ d_1 & d_2 & d_3 \end{vmatrix}_{= 0}$$



or
$$\begin{vmatrix} x - x_2 & y - y_2 & z - z_2 \\ x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ d_1 & d_2 & d_3 \end{vmatrix} = 0$$

$$x + y + z - 1 = 0 & 4x + y - 2z + 2 = 0$$

put z = 0
x + y = 1
4x + y = -2 > x = -1, y = 2
Point (-1, 2, 0)
Direction =
$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 4 & 1 & -2 \end{vmatrix}$$

$$= \hat{i} (-2-1) - \hat{j} (-2-4) + \hat{k} (1-4)$$

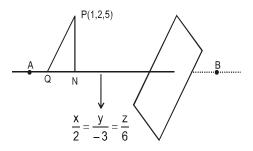
 $= -3\hat{i} + 6\hat{j} - 3\hat{k} = -3(1, -2, 1)$ Equation of line in symmetrical form $\frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-0}{1} \quad (C) \text{ will also satisfy}$ (A, B, C, D) $\frac{x}{2} = \frac{y}{-3} = \frac{z}{6} = r \text{ (Let)} \qquad \dots(1)$ Let N(2r, -3r, 6r) $\therefore \quad PN \text{ is perpendicular to } (1)$ $\Rightarrow (2r-1) \times 2 + (-3r-2) \times (-3) + (6r-5) \times 6 = 0$ 4r - 2 + 9r + 6 + 36r - 30 = 049r - 26 = 0 $r = \frac{26}{49}$

$$\therefore N\!\left(\frac{52}{49},-\frac{78}{49},\frac{156}{49}\right)$$

Q.7

:: Equation of line PN is

$$\frac{x-1}{\frac{52}{49}-1} = \frac{y-2}{\frac{-78}{49}-2} = \frac{z-5}{\frac{156}{49}-5}$$



$$\frac{x-1}{3} = \frac{y-2}{-176} = \frac{z-5}{-89}$$

PQ is parallel to the plane 3x + 4y + 5z = 0Let co-ordinate of Q are $(2\ell, -3\ell, 6\ell)$ Dr's of PQ are $2\ell - 1, -3\ell - 2, 6\ell - 5$ $\therefore 3(2\ell - 1) + 4(-3\ell - 2) + 5(6\ell - 5) = 0$ $\Rightarrow \ell = 3/2$ Q (3, -9/2, 9)Equation of the line PQ is

$$\frac{x-1}{2} = \frac{y-2}{-13/2} = \frac{z-5}{4}$$

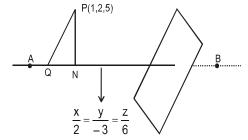
or
$$\frac{x-1}{4} = \frac{y-2}{-13} = \frac{z-5}{8}$$

$$\frac{x}{2} = \frac{y}{-3} = \frac{z}{6} = r$$
 ...(1)

N(2r, -3r, 6r) $\therefore PN, (1)$ $\Rightarrow (2r-1) \times 2 + (-3r-2) \times (-3) + (6r-5) \times 6 = 0$ 4r - 2 + 9r + 6 + 36r - 30 = 049r - 26 = 0

$$r = \frac{26}{49}$$

$$\therefore N\left(\frac{52}{49}, -\frac{78}{49}, \frac{156}{49}\right)$$



$$\frac{x-1}{52} = \frac{y-2}{-78} = \frac{z-5}{156}$$
$$\frac{x-1}{3} = \frac{y-2}{-176} = \frac{z-5}{-89}$$

Q.9

$$2x - 3y - 7z = 0$$

$$3x - 14y - 13z = 0$$
obviously all the three planes

$$8x - 31y - 33z = 0$$

pass through origin

$$D = \begin{vmatrix} 2 & -3 & -7 \\ 3 & -14 & -13 \\ 8 & -31 & -33 \end{vmatrix}$$

= 2(462 - 403) + 3(-99 + 104) - 7(-93 + 112)= 118 + 15 - 133 = 0From the theory of system of equations D = D₁ = D₂ = D₃ = 0 ⇒ System of equations has infinite solutions ∴ hence three planes intersect in a common line

(A, C, D)
Let
$$\vec{a}$$
, \vec{b} , \vec{c} are non coplanar
then $\vec{n} = x\vec{a} + y\vec{b} + z\vec{c}$
 $\vec{n} \cdot \vec{a} = 0 \implies x\vec{a} \cdot \vec{a} + y\vec{a} \cdot \vec{b} + z\vec{a} \cdot \vec{c} = 0$
 $\vec{n} \cdot \vec{b} = 0 \implies x\vec{b} \cdot \vec{a} + y\vec{b} \cdot \vec{b} + z\vec{b} \cdot \vec{c} = 0$

 $\vec{n}.\vec{c} = 0 \implies x\vec{c}.\vec{a} + y\vec{c}.\vec{b} + z\vec{c}.\vec{c} = 0$ Since x, y, z are not all zero simultaneously

$$\Rightarrow \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix} = 0 \Rightarrow [\vec{a} \ \vec{b} \ \vec{c}]^2 = 0$$

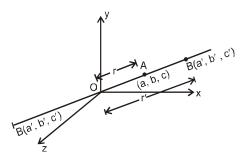
(B) $\cos^2(30^\circ) + \cos^2(45^\circ) + \cos^2\gamma = 1$

$$\Rightarrow \frac{3}{4} + \frac{1}{2} + \cos^2 \gamma = 1$$
 which is not possible

(C) Point is $(3,4,\lambda)$ since only z co-ordinate changes. It lies on a line parallel to z axis and its distance from

 $z axis = \sqrt{9+16} = 5$ (D) Obivious

Dr's of OA line \equiv a, b, c



Dr's of OB line $\equiv a', b', c'$

$$\therefore \frac{a'}{a} = \frac{b'}{b} = \frac{c'}{c}$$

Let Dc's of AB be ℓ , m, n $a = \ell r$, b = mr, c = nr $a' = \ell r'$ b' = mr' c' = nr' $aa' + bb' + cc' = rr'(\ell^2 + m^2 + n^2)$ aa' + bb' + cc' = rr'If point B lies opposite side of origin as A then $aa' + bb' + cc' = -rr'(\ell^2 + m^2 + n^2)$ aa' + bb' + cc' = -rr' $\therefore aa' + bb' + cc' = \pm rr'$

Q.11 (A, D)

$$\therefore \vec{a}.\vec{b} = 0 \text{ and (तथा) } \vec{a}.\vec{c} = 0$$

 $|\vec{b}| = |\vec{c}| = |\vec{b} - \vec{c}| = 4\sqrt{2}$
 $|\vec{b} - \vec{c}|^2 = (4\sqrt{2})^2$
 $|\vec{b}|^2 + |\vec{c}|^2 - 2\vec{b}.\vec{c} = 32$

$$32 + 32 - 2\vec{b}.\vec{c} = 32$$

$$\vec{b}.\vec{c} = 16$$

$$\because |\vec{a}| = 2$$

$$\overrightarrow{AP} = \frac{\vec{b}}{2} - \vec{a} = \frac{\vec{b} - 2\vec{a}}{2}$$

$$\because \overrightarrow{OQ} = \frac{\vec{b} + \vec{c}}{2}$$

$$\cos\theta = \pm \frac{\overrightarrow{AP}.\overrightarrow{OQ}}{|\overrightarrow{AP}|.|\overrightarrow{OQ}|} \dots (1)$$

$$\because |\overrightarrow{AP}| = \left|\frac{\vec{b} - 2\vec{a}}{2}\right|$$

$$= \frac{1}{2}\sqrt{|\vec{b}|^2 + 4|\vec{a}|^2 - 4(\vec{a}.\vec{b})} = \frac{1}{2}\sqrt{32 + 16} = \frac{1}{2}$$

$$\sqrt{48} = 2\sqrt{3}$$

$$|\overrightarrow{OQ}| = \frac{1}{2}\sqrt{|\vec{b}|^2 + |\vec{c}|^2 + 2\vec{b}.\vec{c}} = \frac{1}{2}\sqrt{32 + 32 + 32}$$

$$= \frac{1}{2}\sqrt{96} = 2\sqrt{6}$$

$$\because \overrightarrow{AP}.\overrightarrow{OQ} = \frac{1}{4} (|\vec{b}|^2 + \vec{b}.\vec{c} - 2\vec{a}.\vec{b} - 2\vec{a}.\vec{c})$$

$$= \frac{1}{4}(32 + 16) = 12$$

$$\cos\theta = \pm \frac{12}{2\sqrt{3}}\frac{2}{2\sqrt{6}} = \pm \frac{3}{\sqrt{3}} = \pm \frac{1}{\sqrt{2}}$$

<u>1</u> 2

Q.12 (B,C)
Let a point Q
$$(3\lambda + 15, 8\lambda + 2, -5\lambda + 6)$$

PQ = $(2\lambda + 10, 8\lambda - 5, -5\lambda + 3)$
 $3(3\lambda + 10) + 8(8\lambda - 5) - 5(-5\lambda + 3) = 0$
 $9\lambda + 30 + 64\lambda - 40 + 25\lambda - 15 = 0$
 $98\lambda = 35$

$$\lambda = \frac{35}{98} \Rightarrow PQ = 14$$
 (B)
and plane equation $9x - 4y - 14 = 0$

Q.13 (A, B, C)Dr's of the line

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 4 & 1 & -2 \end{vmatrix} = \hat{i}(-2-1) - \hat{j}(-2-4) + \hat{k}(1-4)$$

$$= -3\hat{i} + 6\hat{j} - 3\hat{k}$$

 \therefore Dr's are -1, 2, -1 or
1, -2, 1
 $x + y + z - 1 = 0$
 $4x + y - 2z + 2 = 0$
Put z=0
 $x + y = 1$
 $4x + y = -2$
 $-3x = 3$
 $x = -1, y = 2, z = 0$
 $\frac{x + 1}{1} = \frac{y - 2}{-2} = \frac{z - 0}{1}$
put z = 1
 $x + y = 0$
 $4x + y = 0$ } $x = y = 0$ & z = 1
 $\therefore \frac{x}{1} = \frac{y}{-2} = \frac{z - 1}{1}$
put y = 1
 $x + z = 0$
 $4x - 2z = -3$
 $2x + 2z = 0$
 $\Rightarrow x = -\frac{1}{2}, z = \frac{1}{2}, y = 1$
 $\therefore \frac{x + \frac{1}{2}}{1} = \frac{y - 1}{-2} = \frac{z - \frac{1}{2}}{1}$
Q.14 (B, C)
d.r's of line are 3, 8, -5
d.r's of PQ are $3\lambda + 10, 8\lambda + 22, -5\lambda + 2$
 \therefore both are perpendidcular
 $\therefore (3\lambda + 10)3 + (8\lambda + 22) 8 + (-5\lambda + 2) (-5) = 0$
 $p = \frac{1}{(3\lambda + 15, 8\lambda + 29, -5\lambda + 2)}$
i.e. $\lambda = -2$
 \therefore for tis (9, 13, 15) PO = 14

PQ = 14∴ foot is (9, 13, 15), Since (5, 7, 3), (9, 13, 15) lies on the plane 9x - 4y - z - 14 = 0and $3 \times 9 + 8(-4) + (-5)(-1) = 0$ \therefore equation of the required plane is 9x - 4y - z - 14 = 0

Comprehension # 1

- **Q.15** (C)
- **Q.16** (B)
- **Q.17** (A)

(15 to 17)

Let the co-ordinates of A be $(3\lambda + 3, 8 - \lambda, \lambda + 3)$ and the co-ordinates of B be $(-3\mu - 3, 2\mu - 7, 4\mu + 6)$. Then direction ratios of AB are $3\lambda + 3\mu + 6, -\lambda - 2\mu + 15, \lambda - 4\mu - 3$ AB $\perp L_1$ so $3(3\lambda + 3\mu + 6) - (-\lambda - 2\mu + 15) + (\lambda - 4\mu - 3) = 0$ i.e. $11\lambda + 7\mu = 0$ and AB $\perp L_2$ so $-3(3\lambda + 3\mu + 6) + 2(-\lambda - 2\mu + 15) + 4(\lambda - 4\mu - 3) = 0$ i.e. $-7\lambda - 29\mu = 0$ $\Rightarrow \lambda = \mu = 0$ so the point A is (3, 8, 3) and the point B is (-3, -7, 6) \therefore AB = $\sqrt{36 + 225 + 9} = \sqrt{270} = 3\sqrt{30}$

Comprehension # 2

(B) The equation of any plane through the intersection of P_1 and P_2 is $P_1 + \lambda P_2 = 0$ $\Rightarrow (2x-y+z-2)+\lambda (x+2y-z-3)=0 ...(i)$ Since, it passes through (3, 2, 1), then $(6-2+1-2)+\lambda (3+4-1)=0$ $\therefore \lambda = -1$ From Eq. (i), x - 3y + 2z + 1 = 0which is the required plane.

Q.19 (C)

Q.18

The equation of any plane through (-1, 3, 2) is a(x = 1) + b(y-3) + c(z-2) = 0...(ii)If this plane (ii) is perpendicular to P₁, then 2a - b + c = 0 ...(iii) From Eqs. (ii) and (iii), we get

$$\frac{a}{-1} = \frac{b}{3} = \frac{c}{5}$$

Substituting these proportionate values of a, b, c in Eq. (ii), we get the required equation as -(x + 1) + 3(y-3) + 5(z-2) = 0or x - 3y - 5z + 20 = 0

Q.20 (A)

The given planes can be written as -2x + y - z + 2 = 0 and -x - 2y + z + 3 = 0Here, (-2)(-1)+(1)(-2)+(-1)(1) = -1 < 0Equation of bisectors

$$\frac{(-2x+y-z+2)}{\sqrt{(4+1+1)}} = \pm \frac{(-x-2y+z+3)}{\sqrt{1+4+1}}$$

 $\therefore \text{ Acute angle bisector is}$ (-2x + y - z + 2) = (-x - 2y + z + 3) $\Rightarrow x - 3y + 2s + 1 = 0$

Comprehension # 3

(B) Equation of the second plane is -x + 2y - 3z + 5 = 0 $2(-1) + 3 \cdot 2 + (-4)(-3) > 0$ \therefore O lies in obtuse angle. $(2 \times 1 + 3(-2) - 4 \times 3 + 7)(-1 + 2(-2) - 3 \times 3 + 5)$ = (2 - 6 - 12 + 7)(-1 - 4 - 9 + 5) > 0 \therefore P lies in obtuse angle.

Q.22 (C)

Q.23

0.21

1 × 2 + 2 × 1 − 3 × 3 < 0 ∴ O lies in acute angle. Also (2 + 2 (−1) − 3(2) + 5) (2 × 2 − 1 + 3 × 2 + 1) = (−1) (10) < 0 ∴ P lies in obtuse angle. (A) 1 − 4 − 9 < 0 ∴ O lies in acute angle. Further (1 + 4 − 6 + 2) (1 − 4 + 6 + 7) > 0

 \therefore The point P lies in acute angle.

Q.24
$$(A \rightarrow (r), (B) \rightarrow (s), (C) \rightarrow (q), (D) \rightarrow (p)$$

(A)
$$y = 0$$
, $\frac{3\lambda - 1}{\lambda + 1} = 0 \implies \lambda = \frac{1}{3}$
(B) $x + 3y - 4z = -6$

$$\frac{x}{-6} + \frac{y}{-2} + \frac{z}{3/2} = 0$$

Algebraic sum of intercept $-6-2+\frac{3}{2}=-\frac{13}{2}$

$$(C)\cos\theta = \frac{6+4-10}{5\sqrt{2}.3} = 0$$

(D) Let $A(2\lambda + 1, 4\lambda + 3, 3\lambda + 2)$ $(2\lambda + 1 - 3) \cdot 3 + (4\lambda + 3 - 8) \cdot 2 + (3\lambda + 2 - 2) (-2) = 0$ $6\lambda - 6 + 8\lambda - 10 - 6\lambda = 0$ $\lambda = 2$ $\therefore A(5, 11, 8)$ $\therefore AP = \sqrt{(2)^2 + (3)^2 + (6)^2} = 7$

Q.25 (A) - R; (B) Q; (C) - S, P
∴ (2) (3) + (-1) (-2) + (2) (6) = 20 > 0
∴ Bisectors are
$$\frac{(2x - y + 2z + 3)}{\sqrt{(2)^2 + (-1)^2 + (2)^2}}$$

$$= \pm \frac{(3x - 2y + 6z + 8)}{\sqrt{(3)^2 + (-2)^2 + (6)^2}} \text{ or } 7(2x - y + 2s + 3)$$

$$= \pm 3(3x - 2y + 6z + 8)$$

$$\therefore \text{ Acute angle bisector is}$$

$$7(2x - y + 2z + 3) = -3(3x - 2y + 6z + 8)$$

$$\Rightarrow 23x - 13y + 32z + 45 = 0 \text{ and Obtuse angle}$$
bisector is
$$7(2x - y + 2z + 3) = 3(3x - 2y + 6z + 8)$$

$$\Rightarrow 5x - y - 4z - 3 = 0$$

$$\therefore A : 23x - 13y + 32z + 45 = 0$$
and $0 : 5x - y - 4z - 3 = 0$
(B) The Give planes can be written as
$$-x + 2y - 2z + 3 = 0 \text{ and } 2x - 3y + 6z + 6z + 8 = 0$$

$$\because (-1) (2) + (2) (-3) + (-2) (6)$$

$$= -2 - 6 - 12 = -20 < 0$$

$$\therefore \text{ Bisectors are,}$$

$$\frac{(-x + 2y - 2z + 3) = 3(2x - 3y + 6z + 8)}{\sqrt{(2)^2 + (-3)^2 + (6)^2}}$$

$$\Rightarrow 7(-x + 2y - 2z + 3) = \pm 3(2x - 3y + 6z + 8)$$

$$\therefore \text{ Acuts angle bisector is 7 (-x + 2y - 2z + 8) = 3(2x - 3y + 6z + 8)$$

$$\Rightarrow 13x - 23y + 32z + 3 = 0 \text{ and obtuse bisector is}$$

$$7 (-x + 2y - 2z + 3) = -3(2x - 3y + 6z + 8)$$

$$\Rightarrow x - 5y - 4z - 45 = 0$$

$$\Rightarrow \therefore A : 13x - 23y + 32z + 3 = 0$$
(C) The given planes can be written as
$$2x + y - 2z + 3 = 0 \text{ and } - 6x - 2y + 2z + 8 = 0$$

$$\because (2) (-6) + (1) (-2) + (-2) (3) = -20 < 0$$

$$\therefore \text{ Bisectors are} \frac{(2x + y - 2z + 3)}{\sqrt{\{(2)^2 + (1)^2 + (-2)^2\}}}}$$

$$= \pm \frac{(-6x - 2y + 3z + 8)}{\sqrt{\{(-6)^2 + (-2)^2 + (3)^2\}}}$$

$$\Rightarrow 7(2x + y - 2z + 3) = \pm 3(-6x - 2y + 3z + 8)$$

$$\Rightarrow 32x + 13y - 23z - 3 = 0 \text{ and obtuse bisector is 7 (2x + y - 2x + 3) = 3(-6x - 2y + 3z + 8)$$

$$\Rightarrow 32x + 13y - 23z - 3 = 0 \text{ and obtuse bisector is 7 (2x + y - 2x + 3) = 3(-6x - 2y + 3z + 8)$$

$$\Rightarrow 32x + 13y - 23z - 3 = 0 \text{ and obtuse bisector is 7 (2x + y - 2x + 3) = 3(-6x - 2y + 3z + 8)$$

$$\Rightarrow 32x + 13y - 23z - 3 = 0 \text{ and obtuse bisector is 7 (2x + y - 2x + 3) = -3(-6x - 2y + 3z + 8)$$

$$\Rightarrow 32x + 13y - 23z - 3 = 0 \text{ and obtuse bisector is 7 (2x + y - 2x + 3) = -3(-6x - 2y + 3z + 8)$$

$$\Rightarrow 4x - y + 5z - 45 = 0$$

$$\therefore A : 32x + 13y - 23z - 3 = 0 \text{ and obtuse bisector is 7 (2x + y - 2x + 3) = -3(-6x - 2y + 3z + 8)$$

$$\Rightarrow 4x - y + 5z - 45 = 0$$

$$\therefore A : 32x + 13y - 23z - 3 = 0 \text{ and obtuse bisector is 7 (2x + y - 2x + 3) = -3(-6x - 2y + 3z + 8)$$

$$\Rightarrow 4x - y + 5z - 45 = 0$$

$$(A) \rightarrow (p), (B) \rightarrow (q), (C) \rightarrow (r), (D) \rightarrow (s)$$

$$(A)$$

$$2(2\lambda + 1) - (-\lambda + 3) + (-\lambda + 4) = 3$$

$$4\lambda = 0 \Longrightarrow \lambda = 0$$

$$\alpha = 1, \ \beta = 3, \ \gamma = 4$$

$$\therefore \text{ distance} = 0 \ (\because \text{ given point lies on the plane})$$

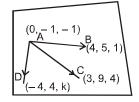
(B) Common normal

$$\begin{vmatrix} 1, 2, 3 \\ \vdots \\ (2, 4, 5) \\ \vdots \\ 2 \\ 3 \\ 4 \\ 3 \\ 4 \\ 5 \end{vmatrix} = \hat{i}(15 - 16) - \hat{i}(10 - 12) + \hat{k}(8 - 9)$$

$$= -\hat{i} + 2\hat{j} - \hat{k}$$

 $SD = projection of + \hat{i} + 2\hat{j} + 2\hat{k} on$

$$-\hat{i} + 2\hat{j} - \hat{k} = \left| \frac{-1 + 4 - 2}{\sqrt{1 + 4 + 1}} \right| = \frac{1}{\sqrt{6}}$$
(C)
$$\begin{vmatrix} -4 & 5 & k + 1 \\ 3 & 10 & 5 \\ 4 & 6 & 2 \end{vmatrix} = 0$$



-4(20-30)-5(6-20)+(k+1)(18-40)=0

 $\begin{array}{ll} 40+70-22 \ (k+1)=0 & \Longrightarrow k=4 \\ (D) \ Vertices \ of \ the \ tetrahedron \ are \ (0,0,0), \ (6,0,0), \ (0, -4,0), \ (0,0,3) \end{array}$

$$\therefore \text{ Volume} = \frac{1}{6} \begin{vmatrix} 0 & 0 & 0 & 1 \\ 6 & 0 & 0 & 1 \\ 0 & -4 & 0 & 1 \\ 0 & 0 & 3 & 1 \end{vmatrix} = 12$$

Q.26

NUMERCIAL VALUE BASED Q.1

$$\begin{bmatrix} 6 \end{bmatrix}$$

$$\frac{x-2}{a} = \frac{y+1}{b} = \frac{z+1}{c} \qquad \Rightarrow 4a+b+c=0...(i)$$

$$2x+y=0=x-y+z \qquad \Rightarrow \begin{vmatrix} \hat{i} & \hat{i} & \hat{k} \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{vmatrix}$$

$$= \hat{i}(1-0) - \hat{j}(2-0) + \hat{k}(-2-1) = \hat{i} - 2\hat{j} - 3\hat{k}$$

$$a-2b-3c=0 \qquad ...(ii)$$
From (i) & (ii)

$$4a+b+c=0 \qquad \Rightarrow a-2b-3c=0$$

$$\Rightarrow \frac{a}{-3+2} = \frac{b}{1+12} = \frac{c}{-8-1} \Rightarrow \frac{a}{-1} = \frac{b}{13} = \frac{c}{-9}$$

$$\therefore \quad \text{equation of the line}$$

$$\frac{x-2}{-1} = \frac{y+1}{13} = \frac{z+1}{-9} \qquad \Rightarrow \frac{3-2}{-1} = \frac{\alpha+1}{13} = \frac{\beta+1}{-9}$$

$$\Rightarrow \alpha = -14 \text{ and } \beta = 8 \Rightarrow |\alpha+\beta| = 6.$$

Q.2 [4]

> $L_1: \frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2} = r$; $L_2: 3x-2y+z+5=0$ Q.5 = 2x + 3y + 4z - k

Any point on the first line is (3r-4, 5r-6, -2r+1)As lines are coplanar therefore this point must lie on both the planes representing the second line 3(3r-4) - 2(5r-6) + (-2r+1) + 5 = 0 \Rightarrow r = 2and 2(3r-4)+3(5r-6)+4(-2r+1)-k=0 $\Rightarrow k = 4$

Q.3

[32]

Since 3(2) + 4(-3) + 6(1) = 0 and 3(1) + 4(2) + 6(-3) + 6(-3) = 07 = 0

: the line
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{1}$$
 lies in the

plane 3x + 4y + 6z + 7 = 0.

In the new position again the line lies in the plane. Let the equation of the new position of the plane be ax + by + cz = 0, then 2a - 3b + c = 0 and a + 2b-3c = 0

$$\therefore$$
 $\frac{a}{9-2} = \frac{b}{1+6} = \frac{c}{4+3}$ i.e. $a = b = c$

$$\therefore$$
 equation of the required plane is $x + y + z = 0$

Q.4 [27]

Since tetrahedron is regular AB = BC = AC = DC and angle between two adjcant side = $\pi/3$ consider planes ABD and DBC vector, normal to plane

ABD is = $\vec{a} \times \vec{b}$

vector, normal to plane DBC is = $\vec{b} \times \vec{c}$ angle between these planes is angle

between vectors $(\vec{a} \times \vec{b}) \& (\vec{b} \times \vec{c})$

$$\Rightarrow \cos\theta = \frac{(\vec{a} \times \vec{b}).(\vec{b} \times \vec{c})}{\left|\vec{a} \times \vec{b}\right| \left|\vec{b} \times \vec{c}\right|}$$
$$= \frac{-\frac{1}{4} \left|\vec{b}\right|^2 \left|\vec{a}\right| \left|\vec{c}\right|}{\frac{3}{4} \left|\vec{a}\right| \left|\vec{b}\right|^2 \left|\vec{c}\right|} = -\frac{1}{3}$$

Since acute angle is required $\theta = \cos^{-1}\left(\frac{1}{3}\right)$ \Rightarrow sec $\theta = 3 \Rightarrow$ sec³ $\theta = 27$

[17]

 $A(\vec{a})$

circum-radius \equiv distance of circum centre from any of the vertex

$$= \text{ distance of } \frac{\vec{a} + \vec{b} + \vec{c}}{4} \text{ from vertex } D(\vec{0})$$

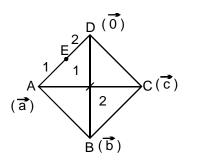
[tetrahedron is regular]
Circumradius $= \frac{1}{4} |\vec{a} + \vec{b} + \vec{c}| = \frac{1}{4}$
 $\sqrt{\vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})}$
 $= \frac{1}{4} \sqrt{k^2 + k^2 + k^2 + 2\left(\frac{k^2}{2} + \frac{k^2}{2} + \frac{k^2}{2}\right)}$
 $= \frac{1}{4} \sqrt{6k^2} = \sqrt{\frac{3}{8}} k$
 $\frac{r}{R} = \frac{1}{3} \implies r = \frac{R}{3} = \frac{k}{\sqrt{24}} \implies R = \sqrt{\frac{3}{8}} k \&$
 $r = \frac{k}{\sqrt{24}} \implies R^2 + r^2 = \frac{5}{12}k^2$
 $\implies \text{minimum value of p + q = 17}$

[13] $\sqrt{3^2 + 4^2 + 12^2} = 13$

Q.6

Q.7 [11]

$$|\vec{a}| = |\vec{b}| = |\vec{c}| = |\vec{a} - \vec{b}| = |\vec{c} - \vec{b}| = |\vec{a} - \vec{c}| = a$$



On solving we get

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{a} \cdot \vec{c} = \frac{a^2}{2} \Rightarrow |\vec{a}| = |\vec{b}| = |\vec{c}| = a$$

$$E = \left(\frac{2\vec{a}}{3}\right) & \text{ } & \text{ & \text{ } & \text{ & \text{ } & \text{ } & \text{ } & \text{ } & \text{ &$$

[9]

Equation of the plane ABC will be $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ Now d = distance of the plane from origin O =

$$\frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} \Rightarrow \frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$$

and $m = OM = \sqrt{a^2 + b^2 + c^2}$
So $\left(\frac{m}{d}\right)^2 = (a^2 + b^2 + c^2) \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) = 3 + \left(\frac{a^2}{b^2} + \frac{b^2}{a^2}\right) + \left(\frac{b^2}{c^2} + \frac{c^2}{b^2}\right) + \left(\frac{c^2}{a^2} + \frac{a^2}{c^2}\right)$
 $\Rightarrow \quad \left(\frac{m}{d}\right)^2_{Min} = 3 + 6 = 9$

By using A.M.-H. M. inequality, we get

$$\frac{a^{2} + b^{2} + c^{2}}{3} \ge \frac{3}{\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}} \implies (a^{2} + b^{2} + c^{2})$$

$$\left(\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}\right) \ge 9$$
Hence $(a^{2} + b^{2} + c^{2})\left(\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}\right)_{\text{minimum}} = 9$
[240]

Volume (V) = $\frac{1}{3} A_1 h_1 \implies h_1 = \frac{3V}{A_1}$ |||Iy $h_2 = \frac{3V}{A_2}, h_3 = \frac{3V}{A_3} \text{ and } h_4 = \frac{3V}{A_4}$ So $(A_1 + A_2 + A_3 + A_4)(h_1 + h_2 + h_3 + h_4) =$ $(A_1 + A_2 + A_3 + A_4)\left(\frac{3V}{A_1} + \frac{3V}{A_2} + \frac{3V}{A_3} + \frac{3V}{A_4}\right)$ = $3V(A_1 + A_2 + A_3 + A_4)$ $\left(\frac{1}{A_1} + \frac{1}{A_2} + \frac{1}{A_3} + \frac{1}{A_4}\right)$

Now using A.M.-H.M inequality in A_1, A_2, A_3, A_4 , we get

$$\frac{A_{1} + A_{2} + A_{3} + A_{4}}{4} \ge \frac{4}{\left(\frac{1}{A_{1}} + \frac{1}{A_{2}} + \frac{1}{A_{3}} + \frac{1}{A_{4}}\right)}$$
$$\Rightarrow (A_{1} + A_{2} + A_{3} + A_{4}) \left(\frac{1}{A_{1}} + \frac{1}{A_{2}} + \frac{1}{A_{3}} + \frac{1}{A_{4}}\right) \ge 16$$

Hence the minimum value of $(A_1+A_2+A_3+A_4)(h_1+h_2+h_3+h_4) = 3V$ (16) = 48V = 48 × 5 = 240 **Ans.**

Q.10 [3]

Q.9

Let position vector of A, B, C be \vec{a} , \vec{b} , \vec{c} respectively.

$$\therefore \qquad 2\vec{a} + 5\vec{b} + 10\vec{c} = 0 \dots (i)$$

Taking cross product with a in (i)

$$0 + 5\vec{a}\times\vec{b} + 10\vec{a}\times\vec{c} = 0$$

$$A(\vec{a})$$

$$B(\vec{b}) = 2\vec{c} \times \vec{a}$$

$$A(\vec{a}) = 0$$

$$B(\vec{b}) = 2\vec{c} \times \vec{a}$$

$$Taking cross product with \vec{c} in (i)

$$2\vec{a} \times \vec{c} + 5\vec{b} \times \vec{c} + 0 = 0$$

$$\Rightarrow \vec{b} \times \vec{c} = \frac{2}{5}\vec{c} \times \vec{a}$$

$$\therefore t = \frac{Area of \Delta ABC}{Area of \Delta AOC}$$

$$= \frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$$

$$= \frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$$

$$= \frac{1}{2} |\vec{c} \times \vec{a}| = \frac{17}{5}$$

$$\therefore |t| = 3$$

$$[9]$$

$$x + 2 = y - 3 = z - k$$

$$y - 3 = z - k$$

$$y - 3 = z - k$$$$

Q.11

Q.12

 $\frac{k+2}{1} = \frac{y-2}{2} = \frac{z-k}{3} = \lambda \Rightarrow (\lambda - 2, 2\lambda + 3, 3\lambda + k)$ for A, $\lambda = 2$ A(0, 7, 6 + k) \Rightarrow for B $\lambda = -\frac{k}{3}$ $\Rightarrow B\left(-2-\frac{k}{3}, 3-\frac{2k}{3}, 0\right)$ $\angle AOB = 90^{\circ} \Rightarrow \overrightarrow{AO} \cdot \overrightarrow{OB} = 0$ $\Rightarrow 7\left(-3+\frac{2k}{3}\right) = 0$ or $k = \frac{9}{2} \Rightarrow 2k = 9$ [34] P=xi+yj ; $\overrightarrow{AP} = (x-1)i+yj$; $\overrightarrow{BP} = (x+1)i+yj$ $\overrightarrow{PA} \cdot \overrightarrow{PB} = x^2 - 1 + y^2$; $\overrightarrow{OA} \cdot \overrightarrow{OB} = -1$ Now $(\overrightarrow{PA} \cdot \overrightarrow{PB}) + 3$ $(\overrightarrow{OA} \cdot \overrightarrow{OB}) = 0$ $\Rightarrow x^2 + y^2 - 4 = 0$ $\Rightarrow x^2 + y^2 = 4$

$$|\overrightarrow{PA}||\overrightarrow{PB}| = \sqrt{(x-1)^2 + y^2} \sqrt{(x+1)^2 + y^2}$$

= $\sqrt{5-2x}\sqrt{5+2x}$
$$|\overrightarrow{PA}||\overrightarrow{PB}| = \sqrt{25-4x^2}$$

Now from $x^2 + y^2 = 4$ put $x = 2\cos\theta$
 $y = 2\sin\theta$
$$|\overrightarrow{PA}||\overrightarrow{PB}| = \sqrt{25-16\cos^2\theta}$$
;
$$|\overrightarrow{PA}||\overrightarrow{PB}|_{max} = \sqrt{25} = M$$

$$|\overrightarrow{PA}||\overrightarrow{PB}|_{min} = \sqrt{9} = m$$
; $M^2 + m^2 = 25 + 9 = 34$

Q.13

[2]

The planes are y + z = 0(1) (-1,1,1) (1,1,-1) (1,-1,1) (2)

$$z + x = 0$$
(2)

x + y = 0......(3)x + y + z = 1......(4)Solving above equations we get vertices of thetetrahedron as (0,0,0), (-1,1,1), (1,-1,1) and (1,1,-1)

:. Required volume =
$$\begin{vmatrix} 1 \\ -1 & 1 \\ 1 \\ -1 & 1 \\ 1 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} \frac{1}{6} \begin{vmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 0 & 0 & -1 \end{vmatrix} = \frac{4}{6} = \frac{2}{3} \Rightarrow t = \frac{2}{3} \Rightarrow 3t = 2$$

Q.14 [4]

$$L_{1}: \frac{x}{0} = \frac{y}{b} = \frac{z-c}{-c} = r$$

; $L_{2}: \frac{x}{a} = \frac{y}{0} = \frac{z+c}{c} = \ell$
Dr's of AB are $-a\ell$, br, $-cr - c\ell + 2c$
 \Rightarrow AB is perpendicular to both the lines
 $\therefore 0(-a\ell) + b. br + (-c) (-cr - c\ell + 2c) = 0$
 $\Rightarrow (b^{2} + c^{2}) r + c^{2}\ell = 2c^{2} \dots (1)$
and $a(-a\ell) + 0(br) + c (-cr - c\ell + 2c) = 0$
 $\Rightarrow -(a^{2} + c^{2})\ell - c^{2}r + 2c^{2} = 0$
 $(a^{2} + c^{2})\ell + c^{2}r = 2c^{2} \dots (2)$

from (1) & (2)

$$\ell = \frac{2b^2c^2}{a^2b^2 + b^2c^2 + c^2a^2}, r = \frac{2a^2c^2}{a^2b^2 + b^2c^2 + c^2a^2}$$

$$A \left(0, \frac{2a^2bc^2}{a^2b^2 + b^2c^2 + c^2a^2}, c \left(\frac{a^2b^2 + b^2c^2 - c^2a^2}{a^2b^2 + b^2c^2 + c^2a^2} \right) \right)$$

$$(0, 0, c)$$

$$A(0, br, -cr+c)$$

$$B(a\ell, 0, c\ell-c)$$

$$B\left(\frac{2ab^{2}c^{2}}{a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}}, 0, c\left(\frac{b^{2}c^{2}-a^{2}b^{2}-c^{2}a^{2}}{a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}}\right)\right)$$

$$d^{2} = \frac{4a^{2}b^{4}c^{4}}{(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})^{2}}$$

$$+ \frac{4a^{4}b^{2}c^{4}}{(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})^{2}} + \frac{4c^{2}(a^{4}b^{4})}{(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})^{2}}$$

$$\frac{4}{d^{2}} = \frac{(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})^{2}}{a^{2}b^{4}c^{4}+a^{4}b^{2}c^{4}+a^{4}b^{4}c^{2}}$$

$$= \frac{a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}}{a^{2}b^{2}c^{2}} \Rightarrow \frac{4}{d^{2}} = \frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}$$

JEE-MAIN PREVIOUS YEAR'S

Q.1

(2)

$$l^2 + m^2 + n^2 = 1$$

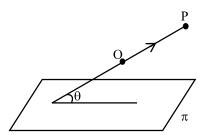
 $\therefore 2n^2 = 1 \Rightarrow n = \pm \frac{1}{\sqrt{2}}$
 $\therefore l^2 + m^2 = \frac{1}{2} \& 1 + m = \frac{1}{\sqrt{2}}$
 $\Rightarrow \frac{1}{2} - 2 lm = \frac{1}{2}$
 $\Rightarrow lm = 0 \quad \text{or} \quad m = 0$
 $\therefore l = 0, m = \frac{1}{\sqrt{2}} \quad \text{or} \quad l = \frac{1}{\sqrt{2}}$
 $\therefore < 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} > \quad \text{or} \quad < \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} >$
 $\therefore \cos \alpha = 0 + 0 + \frac{1}{2} = \frac{1}{2}$

$$\therefore \quad \sin^4 \alpha + \cos^4 \alpha = 1 - \frac{1}{2} \sin^2 (2\alpha)$$
$$= 1 - \frac{1}{2} \cdot \frac{3}{4} = \frac{5}{8}$$

Q.2

(1)

$$n = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -2 \\ -1 & 2 & 1 \end{vmatrix} = 5 \hat{i} + \hat{j} + 3 \hat{k}$$



:. Required plane is: 5(x-2) + (y-1) + 3(z-3) = 0i.e. 5x + y + 3z = 20

$$\overrightarrow{OP} = \sqrt{4 + 1 + 0} = \sqrt{5}$$
$$\overrightarrow{OP} = 2\hat{i} - \hat{j}$$

$$\sin \theta = \left| \frac{10 - 1}{\sqrt{5}\sqrt{25} + 1 + 9} \right| = \frac{9}{5\sqrt{7}}$$

$$\therefore \quad \text{Projection} = \sqrt{5} \times \cos \theta$$

$$= \sqrt{5} \times \frac{1}{5} \sqrt{\frac{94}{7}} = \sqrt{\frac{94}{35}} .$$

Plane passing through intersection of plane is { $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = -1$ } + λ { $\vec{r} \cdot (\hat{i} - 2\hat{j}) + 2$ } = 0 Passes through $\hat{i} + 2\hat{k}$, we get

$$(3-1) + \lambda (\lambda + 2) = 0 \implies \lambda = -\frac{2}{3}$$

Hence, equation of plane is $3\{\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) - 1\} -$

$$2\{\vec{r} \cdot (\hat{i} - 2\hat{j}) + 2\} = 0$$

$$\Rightarrow \vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 7$$

(3)

 $P_1: x-5y+7z=3$ $P_2: 4x-20y+21z=10$ $P_3: x-5y+7z=5$ $P_1 \text{ and } P_3 \text{ are parallel as dr's of normal are same}$

 $\overrightarrow{AB} = \hat{i} + 6\hat{j} - 2\hat{k}$ $\alpha = (\lambda - 4)\hat{i} + 4\hat{j} - \hat{k}$ $\overrightarrow{AB} \cdot \alpha = 0$ $\lambda - 4 + 24 + 2 = 0 \qquad \Rightarrow \lambda = -22$ E = 4 + 8 - 4 = 8

$$\frac{x-1}{4} = \frac{y-0}{-5} = \frac{z+1}{2} = \frac{-2(-6)}{16+25+4} = \frac{12}{45} = \frac{4}{15}$$
$$x-1 = \frac{16}{15} \Longrightarrow x = \frac{31}{15}$$
$$y = -\frac{4}{3}$$
$$z+1 = \frac{8}{15} \Longrightarrow z = -\frac{7}{15}$$
$$\alpha = \frac{31}{15}, \beta = -\frac{4}{3}, \gamma = -\frac{7}{15}$$
$$15(\alpha + \beta + \gamma) = \left(\frac{31}{15} - \frac{4}{3} - \frac{7}{15}\right) \times 15 = 4$$

Q.7

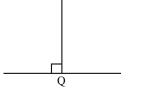
(1)
 Let DR's of line are a,b,c
 ∴ a+2b+c=0
 0.a+b+2c=0

$$\frac{a}{3} = \frac{b}{-2} = \frac{c}{1}$$

Points on the line is (-2, 4, 0)

: equation of lien is
$$\frac{x+2}{3} = \frac{y-4}{-2} = \frac{z}{1} = 1$$

|P(3, 4, 1)



Points Q on the lien is $(3\lambda-2, -2\lambda+4, \lambda)$ DR's of PQ; $3\lambda-5, -2\lambda, \lambda-1$ DR's of y lines are 3, -2, 1 Since PQ \perp line $\Rightarrow 3(3\lambda-5)-2(-2\lambda)+1(\lambda-1)=0$

$$\Rightarrow 14\lambda - 16 \qquad \Rightarrow \lambda = \frac{8}{7}$$
$$\therefore Q\left(\frac{10}{7}, \frac{12}{7}, \frac{8}{7}\right)$$

$$\frac{x-3}{1} = \frac{y-4}{2} = \frac{z-5}{2} = \lambda$$

$$\Rightarrow x = \lambda + 3, y = 2\lambda 4, z = 2\lambda + 5$$

Which lies on given plane hence

$$\Rightarrow \lambda + 3 + 2\lambda + 4 + 2\lambda + 5 = 17$$

$$\Rightarrow \lambda = \frac{5}{5} = 1$$

Hence, point of intersection is Q (4,6,7)

$$\therefore$$
 Required distance = PQ

$$= \sqrt{9 + 25 + 4}$$

Q.9 (1)

 $=\sqrt{38}$

Q.8

(1)

Normal vector of required plane is
$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 2 & -5 & -1 \end{vmatrix}$$

 $= \hat{i} - 11 - \hat{j} - 17 \hat{k}$ $\therefore + 11 (x - 1) + (y - 2) + 17 (z + 3) = 0$ 11x + y + 17z + 38 = 0

Q.10 (4)

A(a,-2a,3) B(0,4,5)
A(a,-2a,3) B(0,4,5)
B(0,4,5)
Ix + my + nz = 0
C lies on plane
$$\Rightarrow$$
 -ma - n = 0 \Rightarrow $\frac{m}{n} = -\frac{1}{a}$(1)
 $\overline{CA} \parallel l\hat{i} + m\hat{i} + n\hat{k}$

$$\frac{a-0}{l} = \frac{-a}{m} = \frac{4}{n} \Rightarrow \frac{m}{n} = -\frac{a}{4} \qquad \dots(2)$$

From (1) & (2)
$$-\frac{1}{a} = \frac{-a}{4} \Rightarrow a^{2} = 4 \Rightarrow a = 2 \quad (\text{since } a > 0)$$

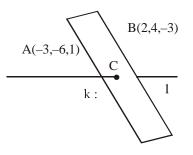
From (2)
$$\frac{m}{n} = \frac{-1}{2}$$

Let m = -t \Rightarrow n = 2t
$$\frac{2}{l} = \frac{-2}{-t} \Rightarrow l = t$$

So plane : t(x - y + 2z) = 0

BD =
$$\frac{6}{\sqrt{6}} = \sqrt{6}$$
 C $\approx (0, -2, -1)$
CD = $\sqrt{BC^2 - BD^2}$
= $\sqrt{(0^2 + 6^2 + 6^2) - (\sqrt{6})^2}$
= $\sqrt{66}$

Q.11 (3)



Point C is

$$\left(\frac{2k-3}{k+1}, \frac{4k-6}{k+1}, \frac{-3k+1}{k+1}\right)$$

$$\frac{x-1}{-1} = \frac{y+4}{2} = \frac{z+2}{3}$$
Plane $lx + my + nz = 0$
 $l(-1) + m(2) + n(3) = 0$
 $-l + 2m + 3n = 0$ (1)
It also satisfy point $(1, -4, -2)$
 $l - 4m - 2n = 0$ (2)
Solving (1) and (2)
 $2m + 3n = 4m + 2n$
 $l n = 2m$
 $l - 4m - 4m = 0$
 $l = 8m$
 $\frac{l}{8} = \frac{m}{1} = \frac{n}{2}$
 $l: m: n = 8: 1: 2$
Plane is $8x + y + 2z = 0$
It will satisfy point C
 $8\left(\frac{2k-3}{k+1}\right) + \left(\frac{4k-6}{k+1}\right) + 2\left(\frac{-3k+1}{k+1}\right) = 0$
 $16k - 24 + 4k - 6 - 6k + 2 = 0$
 $14k = 28$ \therefore $k = 2$

Q.12 [3] Plane passing through (42, 0, 0), (0, 42, 0), (0, 0, 42) From intercept from, equation of plane is x + y + z = 42 $\Rightarrow (x - 11) + (y - 19) + (z - 12) = 0$ let a = x - 11, b = y - 19, c = z - 12a + b + c = 0 Now, given expression is

$$3 + \frac{a}{b^2c^2} + \frac{b}{a^2c^2} + \frac{c}{a^2b^2} - \frac{42}{14abc}$$
$$3 + \frac{a^3 + b^3 + c^3 - 3abc}{a^2b^2c^2}$$
If $a + b + c = 0$
$$\Rightarrow a_3 + b_3 + c_3 = 3 abc$$
$$\Rightarrow 3$$

Q.13 (2)

(3,5,7) satisfy the line L₁:

$$\frac{3-a}{\ell} = \frac{5-2}{3} = \frac{7-b}{4}$$

$$\frac{3-a}{\ell} = 1 \qquad \& \qquad \frac{7-b}{4} = 1$$

$$a + 1 = 3 \qquad \dots(1) \qquad \& \quad b = 3 \qquad \dots(2)$$

$$\vec{V}_1 = <4,3,8 > - <3,5,7 >$$

$$\vec{V}_1 = <1,-2,1 >$$

$$\vec{V}_2 = <\ell,3,4 >$$

$$\vec{V}_1 \cdot \vec{V}_2 = 0 \Longrightarrow \ell - 6 + 4 = 0 \Longrightarrow \ell = 2$$

$$a + 1 = 3 \Longrightarrow a = 1$$

$$L_1 : \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

$$L_2 : \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$$

$$A = <1,2,3 >$$

$$B = <2,4,5 >$$

$$\vec{AB} = <1,2,2 >$$

$$\vec{p} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

$$\vec{q} = 3\hat{i} + 4\hat{j} + 5\hat{k}$$

$$\vec{p} \times \vec{q} = -\hat{i} + 2\hat{j} - \hat{k}$$
Shortest distance $= \left| \frac{\vec{AB} \cdot (\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \right| = \frac{1}{\sqrt{6}}$

Q.14 (2)

$$\vec{r} \times \vec{a} = \vec{b} \times \vec{r} \implies \vec{r} \times (\vec{a} + \vec{b}) = 0$$

$$\vec{r} = \vec{\lambda} (\vec{a} + \vec{b}) \implies \vec{r} = \vec{\lambda} (\hat{i} + 2\hat{j} - 3\hat{k} + 2\hat{i} - 3\hat{j} + 5\hat{k})$$

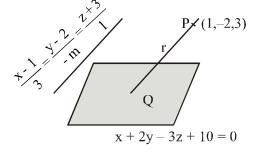
$$\vec{r} = \vec{\lambda} (3\hat{i} - \hat{j} + 2\hat{k}) \qquad \dots (1)$$

$$\vec{r} \cdot (\alpha \hat{i} + 2\hat{j} + \hat{k}) = 3$$

Put \vec{r} from (1) $\alpha \lambda = 1 \qquad \dots (2)$

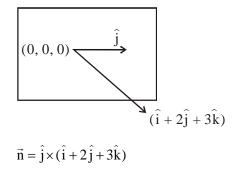
$$\vec{r} \cdot (2\hat{i} + 5\hat{j} - \alpha \hat{k}) = -1$$

Put \vec{r} from (1) $2\lambda\alpha - \lambda = 1$...(3) Solve (2) & (3) $\alpha = 1, \lambda = 1$ $\Rightarrow \vec{r} = 3\hat{i} - \hat{j} + 2\hat{k}$ $|\vec{r}|^2 = 14$ & $\alpha = 1$ $\alpha + |\vec{r}|^2 = 15$



DC of line =
$$\left(\frac{3}{\sqrt{m^2 + 10}}, \frac{-m}{\sqrt{m^2 + 10}}, \frac{1}{\sqrt{m^2 + 10}}\right)$$

 $Q = \left(+\frac{3r}{\sqrt{m^2 + 10}} - +\frac{-mr}{\sqrt{m^2 + 10}} + \frac{r}{\sqrt{m^2 + 10}}\right)$
Q lies on x + 2y - 3z + 10 = 0
 $1 + \frac{3r}{\sqrt{m^2 + 10}} - 4 - \frac{2mr}{\sqrt{m^2 + 10}} - 9 - \frac{3r}{\sqrt{m^2 + 10}} + 10 = 0$
 $\Rightarrow \frac{r}{\sqrt{m^2 + 10}} (3 - 2m - 3) = 2$
 $\Rightarrow \frac{r}{\sqrt{m^2 + 10}} (-2m) = 2$
 $r^{2} = m^2 + 10$
 $\frac{7}{2} m^2 = m^2 + 10 \Rightarrow \frac{5}{2} m^2 = 10 \Rightarrow m^2 = 4$
 $|m| = 2$



$$= -3\hat{i} + 0\hat{j} + \hat{k}$$

So,(-3) (x - 1) + 0 (y - 2) + (1) (z - 3) = 0
$$\Rightarrow -3x + z = 0$$

Option 4
Alternate :
Required plane is

$$\begin{vmatrix} x & y & z \\ 0 & 1 & 0 \\ 1 & 2 & 3 \end{vmatrix} = 0$$
$$\Rightarrow 3x - z = 0$$

Required plane is $p1 + \lambda p_2 = (2 + 3\lambda) x - (7 + 5\lambda) y$ $+ (4 + 4\lambda)z - 3 + 11\lambda = 0;$ which is satisfied by (-2, 1, 3).

Hence, $\lambda = \frac{1}{6}$ Thus, plane is 15x - 47y + 28z - 7 = 0So, 2a + b + c - 7 = 4

 \Rightarrow

 \Rightarrow \Rightarrow

Line
$$\frac{x+1}{2} = \frac{y-3}{1} = \frac{z+2}{-1}$$

P (2,3,1)
M (2 λ - 1, λ + 3, - λ - 2)

$$\overrightarrow{PM} = (2\lambda - 3, \lambda, -\lambda - 3)$$

$$\overrightarrow{PM} \perp (2\hat{i} + \hat{j} - \hat{k})$$

$$4\lambda - 6 + \lambda + \lambda + 3 = 0 \Longrightarrow \lambda = \frac{1}{2}$$

$$\therefore M \equiv \left(\begin{array}{c} \frac{7}{2} & \frac{-5}{2} \end{array} \right)$$

$$\therefore$$
 Reflection (-2, 4, -6)

Plane:
$$\begin{vmatrix} x-2 & y-1 & z+1 \\ 4 & -3 & 5 \end{vmatrix} = 0$$

(x - 2) (-10 + 3) - (y - 1) (15 - 4) + (z + 1) (-1) = 0
-7x + 14 - 11y + 11 - z - 1 = 0
7x + 11y + z = 24

$$\therefore \quad \alpha = 7, \ \beta = 11, \ \gamma = 1$$

$$\alpha + \beta + \gamma = 19 \qquad \text{Option (2)}$$

Q.19 [0] Let point P is (α, β, γ) $\left(\frac{\alpha+\beta+\gamma}{\sqrt{3}}\right)^2 + \left(\frac{\ell\alpha-n\gamma}{\sqrt{\ell^2+n^2}}\right)^2 + \left(\frac{\alpha-2\beta+\gamma}{\sqrt{6}}\right)^2 = 9$ Locus is $\frac{(x+y+z)^2}{3} + \frac{(\ell x-nz)^2}{\ell^2+n^2} + \frac{(x-2y+z)^2}{6} = 9$ $x^2 \left(\frac{1}{2} + \frac{\ell^2}{\ell^2+n^2}\right) + y^2 + z^2 \left(\frac{1}{2} + \frac{n^2}{\ell^2+n^2}\right) + 2zx \left(\frac{1}{2} - \frac{\ell n}{\ell^2+n^2}\right) - 9 = 0$ Since its given that $x^2 + y^2 + z^2 = 9$ After solving 1 = n

Q.20 [28]

$$P(4,-3,1)$$

$$M(3,0,-2)$$

$$Q(2,3,-5)$$

Plane is 1(x - 3) - 3(y - 0) + 3(z + 2) = 0x - 3y + 3z + 3 = 0 $(a^2 + b^2 + c^2 + d^2)_{min} = 28$

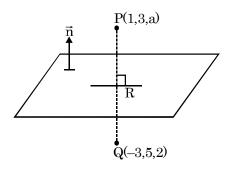
Q.21 [4]

Let plane is $x - 2y + 2z + \lambda = 0$ distance from (1,2,3) = 1 $\Rightarrow \frac{|\lambda + 3|}{5} = 1 \Rightarrow \lambda = 0 -6$ $\Rightarrow a = 1, b = -2, c = 2, d = -6 \text{ or } 0$

b - d = 4 or -2, c - a = 1

 \Rightarrow k = 4 or - 2

Q.22 [1]



plane = 2x - y + z = b
R ≡
$$\left(-1, 4, \frac{a+2}{2}\right)$$
 → on plane
 $\therefore -2 - 4 + \frac{a+2}{2} = b$

 $\Rightarrow a + 2 = 2b + 12 \Rightarrow a = 2b + 10 \dots (i)$ $\langle PQ \rangle = \langle 4, -2, a - 2 \rangle$ $\therefore \frac{2}{4} = \frac{-1}{-2} = \frac{1}{a - 2}$ $\Rightarrow a - 2 = 2 \Rightarrow a = 4, b = -3$ $\therefore |a + b| = 1$

Q.23 [38]

Equation of plane is
$$\begin{vmatrix} x - 1 & y + 6 & z + 5 \\ 3 & 4 & 2 \\ 4 & -3 & 7 \end{vmatrix} = 0$$

Now $(1, -1, \alpha)$ lies on it so

$$\begin{vmatrix} 0 & 5 & \alpha + 5 \\ 3 & 4 & 2 \\ 4 & -3 & 7 \end{vmatrix} = 0 \Rightarrow 5\alpha + 38 = 0 \Rightarrow |5\alpha| = 38$$

Q.24 (2)
Q.25 (1)
Q.26 (3)
Q.27 [1]
Q.28 (4)
Q.29 [3]
Q.30 (4)
Q.31 [7]
Q.32 [6]
Q.33 (1)
Q.34 (4)
Q.35 (2)
P_1: x - 2y - 2z + 1 = 0
P_2: 2x - 3y - 6z + 1 = 0
$$\left| \frac{x - 2y - 2z + 1}{\sqrt{1 + 4} + 4} \right| = \left| \frac{2x - 3y - 6z + 1}{\sqrt{2^2 + 3^2 + 6^2}} \right|$$
$$\frac{x - 2y - 2z + 1}{3} = \pm \frac{2x - 3y - 6z + 1}{7}$$
Since a, a₂ + b₁b₂ + c₁c₂ = 20 > 0
 \therefore Negative sign will give acute bisector
 $7x - 14y - 14z + 7 = -[6x - 9y - 18z + 3]$
 $\Rightarrow 13x - 23y - 32z + 10 = 0$
 $\left(-2, 0, -\frac{1}{2} \right)$ satisfy it \therefore Ans (2)

- **Q.36** (3)
- **Q.37** (4)
- **Q.38** [7]
- **Q.39** (1)
- **Q.40** [61]
- **Q.41** (3)
- **Q.42** [96]
- **Q.43** (2)
- **Q.44** [26]
- **Q.45** (2)
- **Q.46** (4)
- **Q.47** (1)
- **Q.48** (4)
- **Q.49** [4]

JEE-ADVANCED PREVIOUS YEAR'S

Q.1 (A)

Equation of QR is $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-5}{1}$ Let $P \equiv (2+\lambda, 3+4\lambda, 5+\lambda)$ $10+5\lambda-12-16\lambda-5-\lambda=1$ $-7-12\lambda=1$ $\Rightarrow \lambda = \frac{-2}{3}$ then $P \equiv \left(\frac{4}{3}, \frac{1}{3}, \frac{13}{3}\right)$ Let $S = (2+\mu, 3+4\mu, 5+\mu)$ $\overrightarrow{TS} = (\mu)\hat{i} + (4\mu+2)\hat{j} + (\mu+1)\hat{k}$ $\overrightarrow{TS} \cdot (\hat{i}+4\hat{j}+\hat{k}) = 0$ $\mu+16\mu+8+\mu+1=0$ $\mu = -\frac{1}{2}$ $S = \left(\frac{3}{2}, 1, \frac{9}{2}\right)$

$$PS = \sqrt{\left(\frac{4}{3} - \frac{3}{2}\right)^2 + \frac{4}{9} + \left(\frac{13}{3} - \frac{9}{2}\right)^2}$$
$$= \sqrt{\frac{1}{36} + \frac{4}{9} + \frac{1}{36}}$$
$$= \sqrt{\frac{1}{18} + \frac{4}{9}} = \sqrt{\frac{9}{18}} = \frac{1}{\sqrt{2}}$$

Q.2 (A) Equation of required plane $(x + 2y + 3z - 2) + \lambda(x - y + z - 3) = 0$ $\Rightarrow (1 + \lambda)x + (2 - \lambda)y + (3 + \lambda)z - (2 + 3\lambda) = 0$ distance from point (3, 1, -1) $= \left| \frac{3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda}{\sqrt{(1 + \lambda)^2 + (2 - \lambda)^2 + (3 + \lambda)^2}} \right| = \frac{2}{\sqrt{3}}$ $\Rightarrow \left| \frac{-2\lambda}{\sqrt{3\lambda^2 + 4\lambda + 14}} \right| = \frac{2}{\sqrt{3}}$ $\Rightarrow 3\lambda^2 = 3\lambda^2 + 4\lambda + 14$ $\Rightarrow \lambda = -\frac{7}{2}$ equation of required plane 5x - 11y + z - 17 = 0

Q.3 (B,C)

For co-planer lines $[\vec{a} - \vec{c} \ \vec{b} \ \vec{d}] = 0$ $\vec{a} \equiv (1, -1, 0), \ \vec{c} = (-1, -1, 0)$ $\vec{b} = 2\hat{i} + k\hat{j} + 2\hat{k}$ $\vec{d} = 5\hat{i} + 2\hat{j} + k\hat{k}$ Now $\begin{vmatrix} 2 & 0 & 0 \\ 2 & k & 2 \\ 5 & 2 & k \end{vmatrix} = 0 \Rightarrow k = \pm 2$ $\vec{n}_1 = \vec{b}_1 \times \vec{d}_1 = 6\hat{j} - 6\hat{k}$ for k = 2 $\vec{n}_2 = \vec{b}_2 \times \vec{d}_2 = 14\hat{j} + 14\hat{k}$ for k = -2so the equation of planes are $(\vec{r} - \vec{a})\vec{n}_1 = 0 \Rightarrow y - z$ = -1 $(\vec{r} - \vec{a})\vec{n}_2 = 0 \Rightarrow y + z = -1$ (1) $(\vec{r} - \vec{a})\vec{n}_2 = 0 \Rightarrow y + z = -1$ (2) so answer is (B,C)

Q.4 (D)

Any point on line $\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z}{3} = \lambda$ Let any two points on this line are

A(-2, -1, 0), B(0, -2, 3) Put $(\lambda = 0, 1)$ Let foot of perpendicular from A(-2, -1, 0) on plane is (α, β, γ) $\Rightarrow \frac{\alpha+2}{1} = \frac{\beta+1}{1} = \frac{\beta-0}{1} = \mu \text{ (say)}$ Also, $\alpha + \beta + \gamma = 3$ $\Rightarrow \mu - 2 + \mu - 1 + \mu = 3 \Rightarrow \mu = 2$ \Rightarrow M(0, 1, 2) Similarly foot of perpendicular from B(0, -2, 3) on plane is N $\left(\frac{2}{3}, \frac{-4}{3}, \frac{11}{3}\right)$

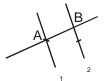
So, equation of MN is $\frac{x-0}{\frac{2}{3}} = \frac{y-1}{\frac{-7}{3}} = \frac{z-2}{\frac{5}{3}}$.

Q.4 (B,D)

Let equation of line ℓ is

$$\ell: \frac{x-0}{a} = \frac{y-0}{b} = \frac{z-0}{c} = k$$

This line ℓ is perpendicular to given line ℓ_1 and ℓ_2 .



Hence a + 2b + 2c = 02a + 2b + c = 0

$$\frac{a}{-2} = \frac{b}{3} = \frac{c}{-2}$$

Hence equation of ℓ is

 $\frac{x}{-2} = \frac{y}{3} = \frac{z}{-2} = k_1, \ k_2$ for ℓ_2 B(-2k_2, 3k_2, -2k_2) for ℓ_1 $NowA(-2k_1, 3k_1, -2k_1)$ Point A satisfied ℓ_1

 $-2k_{1}\hat{j} + 3k_{1}\hat{j} - 2k_{1}\hat{k} = (3 + t)\hat{j} + (-1 + 2t)\hat{j} + (4 + t)\hat{j} + (-1 + 2t)\hat{j} + (-1 + 2t$

 $2t)\hat{k}$ $3 + t = -2k_1$(1) $-1 + 2t = 3k_1$(2)(3) $4 + 2t = -2k_1$ (2) & (3) $-5 = 5k_1 \Longrightarrow k_1 = -1 \Longrightarrow A(2, -3, 2)$ Let any point on ℓ_2 (3 + 2S, 3 + 2S, 2 + S) Given $\sqrt{(1+2S)^2 + (6+2S)^2 + (S)^2} = \sqrt{17}$ $9S^2 + 28S + 37 = 17$ $9S^2 + 28S + 20 = 0$ $9S^2 + 18S + 10S + 20 = 0$ 9S(S+2) + 10(S+2) = 0

Hence (-1, -1, 0), (7/9, 7/9, 8/9)

$$\frac{x-5}{0} = \frac{-y}{\alpha-3} = \frac{z}{-2}$$
$$\frac{x-\alpha}{0} = \frac{y}{-1} = \frac{z}{2-\alpha}$$
$$\begin{vmatrix} 5-\alpha & 0 & 0\\ 0 & 3-\alpha & -2\\ 0 & -1 & 2-\alpha \end{vmatrix} = 0$$
$$(5-\alpha) ((3-\alpha)(2-\alpha)-2) = 0$$
$$(\alpha^2-5\alpha+6-2) = 0$$
$$(\alpha-5)(\alpha^2-5\alpha+4) = 0$$
$$\alpha = 1, 4, 5$$

Q.6

(A)

$$L_{1}: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}$$
Normal of plane P: $\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 7 & 1 & 2 \\ 3 & 5 & -6 \end{vmatrix}$

$$= \hat{i}(-16) - \hat{j}(-42 - 6) + \hat{k}(32)$$

$$= -16\hat{i} + 48\hat{j} + 32\hat{k}$$

$$\Rightarrow \vec{n} = \hat{i} - 3\hat{j} - 2\hat{k}$$
Point of intersection of L₁ and L₂
 $2k_{1} + 1 = k_{2} + 4$
 $-k_{1} = k_{2} - 3$
 $1 = 3k_{2} - 2$
 $k_{2} = 1$
Point of intersection $(5, -2, -1)$
Plane $(x - 5) - 3(y + 7) - 2(z + 1) = 0$
 $x - 3y - 2z - 5 - 6 - 2 = 0$
 $x - 3y - 2z = 13$
 $\Rightarrow a = 1, b = 3, c = -2, d = 13$

0.7 (C)

Line is

$$\frac{x-0}{1} = \frac{y-0}{1} = \frac{z-0}{1} = \alpha \quad \dots \dots (1)$$

$$Q(\alpha, \alpha, 1)$$
Direction ratio of PQ are

$$\lambda - \alpha, \lambda - \alpha, \lambda - 1$$
Since PQ is perpendicular to (1)

$$\therefore \lambda - \alpha + \lambda - \alpha + 0 = 0$$

$$\lambda = \alpha$$

$$\therefore$$
 Direction ratio of PQ are

$$0, 0, \lambda - 1$$

S = -2, -10/9

Another line is $\frac{x-0}{-1} = \frac{y-0}{1} = \frac{z+1}{0} = \beta$ (2) $\therefore R(-\beta, \beta, -1)$ \therefore Direction ratio of PR are $\lambda + \beta, \lambda - \beta, \lambda + 1$ Since PQ is perpendicular to (ii) $\therefore -\lambda - \beta + \lambda - \beta = 0$ $\beta = 0$ $\therefore R(0, 0, -1)$ and Direction ratio of PQ are $\lambda, \lambda, \lambda + 1$ Since PQ \perp PR $\therefore 0+0+\lambda^2-1=0 \Rightarrow \lambda=\pm 1 \Rightarrow B, C$ For $\lambda = 1$ the point is on the line so it will be rejected. $\Rightarrow \lambda = -1$.

Q.8 (B,D)

Let P_3 be $P_2 + \lambda P_1 = 0 \Rightarrow x + \lambda y + z - 1 = 0$ Distance from (0, 1, 0) is 1

$$\therefore \frac{0+\lambda+0-1}{\sqrt{1+\lambda^2+1}} = \pm 1$$
$$\lambda = -\frac{1}{2}$$

:. Equation of P_3 is 2x - y + 2z - 2 = 0Dist. from (α, β, γ) is 3

$$\therefore \left| \frac{2\alpha - \beta + 2\gamma - 2}{3} \right| = 2 \qquad \Longrightarrow 2\alpha - \beta + 2\gamma = 2 \pm 6$$

 \therefore option (B, D) are correct.

Q.9 (A,B)

Let \vec{v} be the vector along L

then
$$\vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 2 & -1 & 1 \end{vmatrix} = \hat{i} - 3\hat{j} - 5\hat{k}$$

So any point on line L is $A(\lambda, -3\lambda, -5\lambda)$ Foot of perpendicular from A to P, is

$$\frac{\mathbf{h}-\lambda}{1} = \frac{\mathbf{k}-3\lambda}{2} = \frac{\ell+5\lambda}{-1} = -\frac{(\lambda-6\lambda+5\lambda+1)}{1+4+1} = -\frac{1}{6}$$

$$h = \lambda - \frac{1}{6}, k = -3\lambda - \frac{1}{3}, \ell = -5\lambda + \frac{1}{6}$$

so foot is $\left(\lambda - \frac{1}{6}, -3\lambda - \frac{1}{3}, -5\lambda + \frac{1}{6}\right)$ So (A, B)

Q.10 (C)

Image of point (3, 1, 7) in plane (x - y + z = 3) is P

$$\frac{x-3}{1} = \frac{y-1}{-1} = \frac{z-7}{1} = -2\left(\frac{3-1+7-3}{1+1+1}\right) = -4$$

So *P* is (-1, 5, 3)

Equation of plane through P and containing the line

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{1} \text{ is}$$

$$ax + by + cz = 0$$

$$a + 2b + c = 0$$

$$-a + 5b + 3c = 0$$

$$\therefore \begin{vmatrix} x & y & z \\ 1 & 2 & 1 \\ -1 & 5 & 3 \end{vmatrix} = 0 \implies x - 4y + 7z = 0$$

Q.11 (A,C,D)

$$\therefore \pi r^{2} = \frac{8\pi}{3} \qquad \Rightarrow r = \frac{2\sqrt{2}}{\sqrt{3}}$$
Also $\frac{s-x}{4} = \frac{s-y}{3} = \frac{s-z}{2} = \lambda$

$$\Rightarrow s = 9\lambda, "= rs$$

$$\therefore \Delta^{2} = s(s-x)(s-y)(s-z) \Rightarrow \lambda = 1$$
 $s = 9$ and sides are 5, 6 and 7.

$$"=9 \times \frac{2\sqrt{2}}{\sqrt{3}} = 6\sqrt{6}$$

$$\Delta = \frac{xyz}{4R} \qquad \Rightarrow R = \frac{35}{4\sqrt{6}}$$
 $r = 4R \sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2}$

$$\Rightarrow \sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2} = \frac{r}{4R} = \frac{4}{35}$$
 $(\pi - Z) = 1$

 $\sin^2\left(\frac{\pi}{2} - \frac{Z}{2}\right) = \frac{1}{2}(1 + \cos Z) \qquad \because \cos Z = \frac{1}{5}$ Hence, (a, c, d)

Q.12 (D)

Let plane be $a(x-1)+b(y-1)+c\ (z-1)=0$ Now, direction ration of its normal

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 3 & -6 & -2 \end{vmatrix} = \hat{i} (-14) - \hat{j} (2) + \hat{k} (-15)$$

So, -14(x-1)-2(y-1)-15(z-1)=0 14x + 2y + 15z = 31Q.13 (C,D) D.C. of line of intersection (a, b, c) $\Rightarrow 2a + b - c = 0$ a + 2b + c = 0

$$\frac{a}{1+2} = \frac{b}{-1-2} = \frac{c}{4-1}$$
(B) $\frac{3x-4}{9} = \frac{1-3y}{9} = \frac{z}{3}$

$$\Rightarrow \frac{x-4/3}{3} = \frac{y-1/3}{-3} = \frac{z}{3}$$

 \Rightarrow lines are parallel.

(C) Acute angle between

P₁ and P₂ = cos⁻¹
$$\left(\frac{2 \times 1 + 1 \times 2 - 1 \times 1}{\sqrt{6}\sqrt{6}}\right)$$

= cos⁻¹ $\left(\frac{3}{6}\right)$ = cos⁻¹ $\left(\frac{1}{2}\right)$ = 60°
(D) Plane is given by (x - 4) - (y - 2) + (z + 2) = 0
 \Rightarrow x - y + z = 0

Distance of (2, 1, 1) from plane = $\frac{2 - 1 + 1}{\sqrt{3}} = \frac{2}{\sqrt{3}}$

Let
$$P(\alpha, \beta, \gamma)$$

 $Q(0, 0, \gamma)\&$
 $R(\alpha, \beta, -\gamma)$
Now, $\overline{PQ} \parallel \hat{i} + \hat{j} \Rightarrow (\alpha \hat{i} + \beta \hat{j}) \parallel (\hat{i} + \hat{j})$
 $\Rightarrow \alpha = \beta$
Also, mid point of PQ lies on the plane
 $\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} = 3 \Rightarrow \alpha + \beta = 6 \Rightarrow \alpha = 3$

Now, distance of point P from X-axis is $\sqrt{\beta^2 + \gamma^2} = 5$

$$\Rightarrow \beta^{2} + \gamma^{2} = 25 \Rightarrow \gamma^{2} = 16$$

as $\beta = \alpha = 3$
as $\gamma = 4$
Hence, PR = $2\gamma = 8$

Q.15 (A,B,D) Points on L_1 and L_2 are respectively A $(1 - \lambda, 2\lambda, 2\lambda)$ and B $(2\mu, -\mu, 2\mu)$

So, $\overline{AB} = (2\mu + \lambda - 1)\hat{i} + (-\mu - 2\lambda)\hat{j} + (2\mu - 2\lambda)\hat{k}$

and vector along their shortest distance = $2\hat{i} + 2\hat{j} - \hat{k}$.

Hence,
$$\frac{2\mu + \lambda - 1}{2} = \frac{-\mu - 2\lambda}{2} = \frac{2\mu - 2\lambda}{-1}$$

$$\Rightarrow \lambda = \frac{1}{9} \& \mu = \frac{2}{9}$$

Hence, $A = \left(\frac{8}{9}, \frac{2}{9}, \frac{2}{9}\right)$ and $B = \left(\frac{4}{9}, -\frac{2}{9}, \frac{4}{9}\right)$
$$\Rightarrow \text{Mid point of AB} = \left(\frac{2}{3}, 0, \frac{1}{3}\right)$$

Q.16 (3,4)

Let $P(\lambda, 0, 0)$, $Q(0, \mu, 1)$, $R(1, 1, \nu)$ be points. L_1, L_2 and L_3 respectively

Since P, Q, R, are collinear, \overrightarrow{PO} is collinear with \overrightarrow{QR}

Hence
$$\frac{-\lambda}{1} = \frac{\mu}{1-\mu} = \frac{1}{\nu-1}$$

For every $\mu \in R-\{0,1\}$ there exist unique $\lambda,\nu \in R$

Q.17 (A,B)

Point of intersection of $L_1 \& L_2$ is (1, 0, 1)Line L passes through (1, 0, 1)

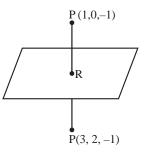
$$\frac{1-\alpha}{\ell} = -\frac{1}{m} = \frac{1-\gamma}{-2} \qquad \dots (1)$$

acute angle bisector of L₁ & L₂

$$\vec{r} = \hat{i} + \hat{k} + \lambda \left(\frac{\hat{i} - \hat{j} + 3\hat{k} - 3\hat{i} - \hat{j} + \hat{k}}{\sqrt{11}} \right)$$
$$\vec{r} = \hat{i} + \hat{k} + t \left(\hat{i} + \hat{j} - 2\hat{k} \right)$$
$$\Rightarrow \frac{\ell}{1} = \frac{m}{1} = \frac{-2}{-2} \quad \Rightarrow \ell = m = 1$$
From (1)
$$\frac{1 - \alpha}{1} = -1 \quad \Rightarrow \alpha = 2$$

$$\&\frac{1-\gamma}{-2} = -1 \quad \Rightarrow \ \gamma = -1$$

Q.18 (A, B, C)



R is mid point of PQ \therefore R (2, 1, -1) and it lies on plane equation of plane is $\alpha a+\beta y+\gamma z=\delta$ $\therefore 2\alpha+\beta-\gamma =\delta$ Normal vector to plane is

.....(1)

 $\vec{n} = 2i + 2j$

Q.19

 $\therefore \frac{\alpha}{2} = \frac{\beta}{2} = \frac{\gamma}{0} = k$(2) $\therefore \alpha = 2k, \beta = 2k, \gamma = 0$ and $\alpha + \gamma = 1$ (given)(3) from (2) and (3) $\therefore \alpha = 1, \beta = 1, \gamma = 0$ and from (1) $2(1)+1-0=\delta$ δ=3 Now : $\alpha + \beta = 2$ $\delta - \gamma = 3$ $\delta + \beta = 4$ so, A,B,C are correct. [1.00] Q.20 [1.50] 19 & 20 $7x + 8y + 9z - (\gamma - 1) = A(4x + 5y + 6z - \beta) + \beta = A(4x + 5y + 6z - \beta)$ $B(x+2y+3z-\alpha)$ x: 7 = 4A + By: 8 = 5A + 2BA = 2, B = -1const. term : $-(\gamma - 1) = -A\beta - \alpha B \Longrightarrow -(\gamma - 1)$ $\equiv 2\beta + \alpha$ $\alpha - 2\beta + \gamma = 1$ $M = \begin{pmatrix} \alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \alpha - 2\beta + \gamma = 1$ Plane P: x - 2y + z = 1

Perpendicular distance = $\left|\frac{3}{\sqrt{6}}\right| = P \Rightarrow D = P^2 = \frac{9}{6} = 1.5$

3-Dimensional Geometry

EXERCISES

ELEMENTARY

Q.1

(3)

$$2A + 2B = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}, A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$
On adding, we get $3A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$

$$\Rightarrow A = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 1/3 \end{bmatrix}$$

Clearly, $AB = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$ = $\begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = BA$ (verify).

$$(A-2I)(A-3I) = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$

Q.4 (4)

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 3 & 0 \\ -3 & 2 & -2 \\ 6 & 4 & 5 \end{bmatrix}$$

$$A \cdot A^{2} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & 0 \\ -3 & 2 & -2 \\ 6 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ -9 & -2 \\ 21 & 11 \end{bmatrix}$$

$$\Rightarrow A^{3} - 3A^{2} - A + 9I_{3} = 0$$
Q.5 (4)
Given, Matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

We know that

$$A^{2} = A.A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Therefore

 $A^{16} = (A^2)^8 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}^8 = \begin{bmatrix} (-1)^8 & 0 \\ 0 & (-1)^8 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Q.6

(3)

Given AB = A, $\therefore B = I \implies BA = B$, $\therefore A = I$. Hence, $A^2 = A$ and $B^2 = B$.

$$\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 35 \\ 40 \end{bmatrix};$$
$$\therefore \begin{bmatrix} 35 \\ 40 \end{bmatrix} + \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} 43 \\ 44 \end{bmatrix}$$

Q.8 (2)

$$\mathbf{A}' = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -5 \\ -2 & 5 & 0 \end{bmatrix} = -\mathbf{A}$$

Q.9 (4)

Matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & \lambda & 5 \end{bmatrix}$$
 be non singular,
only if
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & \lambda & 5 \end{vmatrix} \neq 0$$
$$\Rightarrow 1(25 - 6\lambda) - 2(20 - 18) + 3(4\lambda - 15) \neq 0$$
$$\Rightarrow 25 - 6\lambda - 4 + 12\lambda - 45 \neq 0$$
$$\Rightarrow 6\lambda - 24 \neq 0 \Rightarrow \lambda \neq 4$$

Q.10 (2)

1 -7 7

$$AB = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} -3 & -2 \\ 10 & 7 \end{bmatrix} \Longrightarrow (AB)^{T} = \begin{bmatrix} -3 & 10 \\ -2 & 7 \end{bmatrix}$$

$$= (A - A^{T})^{T} = A^{T} - (A^{T})^{T}$$
$$= A^{T} - A [\because (A^{T})^{T} = A] = -(A - A^{T})$$
So, $A - A^{T}$ is a skew symmetric matrix

Q.12 (2)

In A⁻¹ the element of 2nd row and 3rd column is the c_{32} element of the matrix (c_{ij}) of cofactors of element of A, (due to transposition) divided by $\Delta = |A| = -2$.

:. Required element =
$$\frac{(-1)^{3+2}M_{32}}{-2} = \frac{-(-2)}{-2} = -1$$
,
where $M_{32} = \text{minor of } c_{32} \text{ in } A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} = 0 - 2 = -2$

Q.13 (1)

Since A is symmetric, therefore $A^T = A$. Now $(A^n)^T = (A^T)^n = (A)^n$

- \therefore Aⁿ is also a symmetric matrix.

Q.14 (1)

In a skew-symmetrix matrix $a_{ij} = -a_{ji} + i, j = 1, 2, 3$

$$\label{eq:alpha} \begin{split} & \text{for } j = i, \ a_{_{ii}} = -a_{_{ji}} \ \Rightarrow \ a_{_{ii}} = 0 \\ & \Rightarrow \text{each} \ . \end{split}$$

Hence the matrix
$$\begin{bmatrix} 0 & 4 & 5 \\ -4 & 0 & -6 \\ -5 & 6 & 0 \end{bmatrix}$$
 is skew-symmetric.

Q.15 (4)

Let
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow |A| = 1$$

 $adj(A) = \begin{bmatrix} 1 & 2 & -1 \\ -2 & 1 & 1 \\ 7 & -2 & 1 \end{bmatrix}^{T}$.
Hence, $A^{-1} = \frac{adj(A)}{|A|} \Rightarrow A^{-1} = \begin{bmatrix} 1 & -2 & 7 \\ 2 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$

Hence, element z = 3.

Q.16 (1)

$$3A^{3} + 2A^{2} + 5A + I = 0 \Rightarrow I = -3A^{3} - 2A^{2} - 5A$$

 $\Rightarrow IA^{-1} = -3A^{2} - 2A - 5I$
 $\Rightarrow A^{-1} = -(3A^{2} + 2A + 5I)$

Q.17 (1)

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies |A| = -1(1+0) = -1$$
$$adj(A) = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

$$\Rightarrow A_{11} = 0, A_{12} = -1, A_{13} = 0$$
$$A_{21} = -1, A_{22} = 0, A_{23} = 0$$
$$A_{31} = 0, A_{32} = 0, A_{33} = -1$$
$$\Rightarrow A^{-1} = \frac{\text{adj}(A)}{|A|} = \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} = A$$

Q.18 (1)

$$A^{-1} = \frac{\operatorname{adj}(A)}{|A|} = \frac{1}{|A|} \operatorname{adj}(A)$$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = -1 ; |A| = 0 - 1(1 - 9) + 2(1 - 6) = 8 - 10$$

$$|A| = -2 \neq 0$$

$$Adj A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

$$A_{11} = (-1)^{1+1} [(2)(1) - (3)(1)] = -1$$

$$A_{12} = 8, A_{13} = -5, A_{21} = 1, A_{22} = -6$$

$$A_{23} = 3, A_{31} = -1, A_{32} = 2, A_{33} = -1,$$

$$\therefore A^{-1} = \frac{1}{-2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & -1 \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$$
(2)

Q.19 (2)

We have,
$$A(adjA) = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

or $A(adjA) = 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 10I$ (i)
and $A^{-1} = \frac{1}{|A|}(adjA)$

$$A(adjA) = |A|I \qquad \dots (ii)$$

From equation (i) and (ii), we get |A|=10.

Q.20 (3)

$$X = \begin{bmatrix} -x & -y \\ z & t \end{bmatrix}; \text{ adj } X = \begin{bmatrix} t & y \\ -z & -x \end{bmatrix}$$

$$\therefore \text{ Transpose of } (\text{adj } (X)) = \begin{bmatrix} t & -z \\ y & -x \end{bmatrix}$$
Q.21 (4)

$$|A| = \begin{vmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{vmatrix} = 1[3] + 1[6] + 1[-4] = 5$$

$$B = \text{adj } A = \begin{bmatrix} 3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2 \end{bmatrix}$$

adj B =
$$\begin{bmatrix} 5 & -5 & 5\\ 0 & 10 & -15\\ 10 & 5 & 0 \end{bmatrix}$$
 = 5A and C = 5A

$$C = adj B; |C| = |adj B|; \frac{|adj B|}{|C|} = 1.$$

Q.22 (3)

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{bmatrix}$$

 \Rightarrow | Adj(A) |= 144

Let c_{ij} be co-factor of a_{ij} in A. Then co-factor of elements of A are given by

$$C_{11} = \begin{vmatrix} 4 & 9 \\ 8 & 27 \end{vmatrix} = 36, C_{21} = \begin{vmatrix} 2 & 3 \\ 8 & 27 \end{vmatrix} = -30,$$

$$C_{31} = \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} = 6$$

$$C_{12} = \begin{vmatrix} 1 & 9 \\ 1 & 27 \end{vmatrix} = -18, C_{22} = \begin{vmatrix} 1 & 3 \\ 1 & 27 \end{vmatrix} = 24, C_{32} = \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} = -6$$

$$C_{13} = \begin{vmatrix} 1 & 4 \\ 1 & 8 \end{vmatrix} = 4, C_{23} = \begin{vmatrix} 1 & 2 \\ 1 & 8 \end{vmatrix} = -6, C_{33} = \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = 2$$

$$\Rightarrow |A| = \begin{vmatrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{vmatrix}$$

$$\Rightarrow |Adj(A)| = 36(48 - 36) + 30(-36 + 24) + 6(108 - 96)$$

We know
$$A a d j(A) = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$

$$\therefore |A| . |adj(A)| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$

$$\therefore |A| . adj|A| = |A|^{3}$$
Now question gives $|A| = 8$

$$\therefore 8.adj|A| = 8^{3} \text{ or } adj |A| = 8^{2} = (2^{3})^{2} = 2^{6}$$

Q.24 (1)

Since $A^2 = O$ (Zero matrix) and 2 is the least +ve integer for which $A^2 = O$. Thus, A is nilpotent of index 2.

Q.25 (1)

Since for given
$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$

$$\Rightarrow$$
 AA^T = A^TA = I_(3×3). Thus A is orthogonal.

JEE-MAIN OBJECTIVE QUESTIONS

Q.1 (3)

It is a 12 elements matrices. Possible orders are 1×12 , 12×1 , 2×6 , 6×2 , 3×4 and 4×3 . \therefore Number of possible orders is 6.

$$\begin{bmatrix} x^2 + x & x \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ -x + 1 & x \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 5 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x^2 + x & x - 1 \\ -x + 4 & x + 2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 5 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x^2 + x & x - 1 \\ -x + 4 & x + 2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 5 & 1 \end{bmatrix}$$

On comparing $x^2 + x = 0 \Rightarrow x = 0, -1$ $x - 1 = -2 \Rightarrow x = -1$ $-x + 4 = 5 \Rightarrow x = -1$ $x + 2 = 1 \Rightarrow x = -1$ Hence the value of x is -1.

 $\begin{array}{ll} \textbf{Q.3} & (4) \\ & \text{Given, } \textbf{A} + \textbf{A}^{\text{T}} = \textbf{I} \end{array}$

So,	$\int \cos \alpha$	$-\sin\alpha$		$\cos \alpha$	$\sin \alpha$
	sin α	$\cos \alpha$		$-\sin\alpha$	$\cos \alpha$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \qquad \begin{bmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\therefore \qquad 2\cos\alpha = 1 \Rightarrow \cos\alpha = \frac{1}{2}$$

$$\therefore \qquad \alpha = \frac{\pi}{3} \text{ or } \frac{5\pi}{3}$$

So, number of values of $\alpha \in (0, \pi)$ are two.

Q.4

(4)

Let matrix
$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 can commute with
 $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.
So, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow$
 $\begin{bmatrix} a+b & a \\ c+d & c \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ a & b \end{bmatrix}$
 \therefore On comparing, we get $b=c$, $a=b+d$
So matrix $= \begin{bmatrix} a & b \\ b & a-b \end{bmatrix}$.

Q.5 (4) Matrix A has order (3×1) and Matrix B has order (3×3) . So multiplication AB is not possible.

Q.6 (1)

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
$$I \cos\theta + J \sin\theta = \begin{bmatrix} \cos\theta & 0 \\ 0 & \cos\theta \end{bmatrix} + \begin{bmatrix} 0 & \sin\theta \\ -\sin\theta & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Q.7 (1)

$$AB = \begin{bmatrix} 3ax^2 & 3bx^2 & 3cx^2 \\ a & b & c \\ 6ax & 6bx & 6cx \end{bmatrix}$$

 \Rightarrow 3ax² + b + 6cx = (x + 2)² + 2x + 5x² $3ax^2 + 6c + b = 6x^2 + 6x + 4$ \Rightarrow a = 2, b = 4, c = 1 \Rightarrow a + b + c = 7. Q.8 (2)A = diag(2, -1, 3), B = diag(-1, 3, 2) then $A^2 B =$ $\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix} ; \mathbf{B} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $A^{2} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 9 \end{bmatrix};$ $A^{2}B = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 18 \end{bmatrix} = \text{diag} (-4, 3, 18)$ Q.9 (1) $\mathbf{A}^2 = \begin{bmatrix} \mathbf{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{2} \end{bmatrix}$ $A^{4} = A^{2} \cdot A^{2} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2^{2} & 0 \\ 0 & 2^{2} \end{bmatrix}, A^{6} = \begin{bmatrix} 2^{3} & 0 \\ 0 & 2^{3} \end{bmatrix},$ $A^8 = \begin{vmatrix} 2^4 & 0 \\ 0 & 2^4 \end{vmatrix}$ $\therefore \quad (\mathbf{A}^8 + \mathbf{A}^6 + \mathbf{A}^4 + \mathbf{A}^2 + \mathbf{I}) \ \mathbf{V} = \begin{bmatrix} \mathbf{31} \\ \mathbf{62} \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 31 & 0 \\ 0 & 31 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 31 \\ 62 \end{bmatrix}$ \Rightarrow x = 1, y = 2 \therefore xy = 2. Q.10 (4)If A is n^{th} root of I_2 , then $A^n = I_2$. Now, $A^{2} = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} = \begin{bmatrix} a^{2} & 2ab \\ 0 & a^{2} \end{bmatrix};$

Now, tr(AB) = tr(C)

$$A^{3} = A^{2}A \begin{bmatrix} a^{2} & 2ab \\ 0 & a^{2} \end{bmatrix} \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} = \begin{bmatrix} a^{3} & 3ab \\ 0 & a^{3} \end{bmatrix}$$

Thus,
$$A^{n} = \begin{bmatrix} a^{n} & nab \\ 0 & a^{n} \end{bmatrix}$$

Now
$$A^n = I$$

$$\Rightarrow \begin{bmatrix} a^n & nab \\ 0 & a^n \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow a^n = 1, b = 0$$

Q.11 (3)

Given $A^2 = A$. Now $(I + A)^3 - 7A$ $= I^3 + 3I^2A + 3IA^2 + A^3 - 7A = I + 3A + 3A + A - 7A$ = I + O = I

Q.12 (2)

We have,

$$\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \alpha^2 + \beta \gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow \alpha^2 + \beta \gamma - 1 = 0$$

Q.13 (4)

Assume C = AB - BAIf C = Ithen trace $(C) = 1 + 1 + \dots + 1 = n$ But trace (C) = 0 $(\because \text{ trace } (AB) = \text{trace } (.BA))$ Which is a contradiction Hence no such ordered pair is possible.

Q.14 (1)

$$\begin{split} A^{N+1} &= (B+C)^{N+1} \\ \text{We can expand } (B+C)^{N+1} \text{ like binomial expansion as} \\ BC &= CB. \\ \therefore \quad (B+C)^{N+1} &= {}^{N+1}C_0B^{N+1} + {}^{N+1}C_1B^NC + {}^{N+1}C_2B^N \\ {}^{-1}C^2 + \dots + C^{N+1}. \\ &= B^{N+1} + (N+1)B^NC + 0 + 0 \dots + 0 = B^N(B+(N+1)C). \end{split}$$

Q.15 (1)

 $A^{2} - 2A + I = 0$ $\Rightarrow (A - I)^{2} = 0$ $A^{n} = (A - I + I)^{n} = {}^{n}C_{0}(A - I)^{n} + \dots + {}^{n}C_{n-2}(A - I)^{2}$ $\cdot I^{n-2} + {}^{n}C_{n-1}(A - I) \cdot I^{n-1} + {}^{n}C_{n}I^{n}$ $= 0 + 0 + \dots + 0 + n(A - I) + I = nA - (n-1)I$ Q.16 (3) AB = BPromultiply both sides by P

Premultiply both sides by B $BAB = B^2 \implies AB = B^2$ $\Rightarrow B = B^2$ Similarly $BA = A \implies ABA = A^2$ $\Rightarrow BA = A^2 \implies A = A^2$

Q.18 (3)

For upper triangle matrix, elements below diagonal are zero

 \therefore $a_{ii} = 0$, where i > j

Q.19 (3)

Trace of A = $a_{11} + a_{22} + a_{33}$ For skew symmetric matrix $a_{11} = a_{22} = a_{33} = 0$ Trace of A = 0

Q.20 (1)

$$p^{2} - q^{2} = r;$$

 $p = 3$
 $q = 2, r = 5$

$$\begin{array}{ll} \textbf{Q.21} & (1) \\ A^{T} = -A \\ \Rightarrow & (A^{n})^{T} = (AAA - \dots A)^{T} = (A^{T} A^{T} A^{T} A^{T} - \dots A^{T}) \\ = & (A^{T})^{n} \text{ for all } n \in N \\ & (-A)^{n} = & (-1)^{n} A^{n} \\ \Rightarrow & (A^{n})^{T} = \begin{cases} A^{n} \text{ if } n \text{ is even} \\ -A^{n} \text{ if } n \text{ is odd} \end{cases}$$

Q.22 $P + P^T = 0 \implies P$ is skew symmetric matrix of order 2.

Let
$$P = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$$
$$2A = 4I - P = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$$
$$\Rightarrow \quad 2A = \begin{bmatrix} 4 & -a \\ a & 4 \end{bmatrix}$$
$$|2A| = 16 + a^{2}$$
$$\Rightarrow \quad 4 |A| = 16 + a^{2} \Rightarrow |A| = 4 + \frac{a^{2}}{4}$$
$$\therefore \quad |A| \ge 4 \text{ Ans. }]$$

(1)

From given data
$$|A| = 2^4$$

 \Rightarrow $|adj (adj) A| = (2^4) = 2^{36}$

$$\Rightarrow \left\{\frac{\mathrm{dt}(\mathrm{adj}(\mathrm{adj})\mathbf{A})}{7}\right\} = \left\{\frac{2^{36}}{7}\right\} = \left\{\frac{(7+1)^{12}}{7}\right\} = \frac{1}{7}$$

$$= I + {}^{n}C_{1}A + {}^{n}C_{2}A + \dots + {}^{n}C_{n}A$$

= I + ("C_{1} + "C_{2} + \dots + "C_{n})A
= I + (2^{n} - 1)A
(I + A)" = I + (2" - 1)A = I + (2" + k)A
 \therefore K = -1

JEE-ADVANCED OBJECTIVE QUESTIONS

Q.1 (C)

$$A^{2} = \begin{bmatrix} a & 1 \\ -1 & b \end{bmatrix} \begin{bmatrix} a & 1 \\ -1 & b \end{bmatrix} A^{2} = \begin{bmatrix} a^{2} - 1 & a + b \\ -(a + b) & b^{2} - 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Hence $a^{2} - 1 = 0$; $a + b = 0$
 $b^{2} - 1 = 0$
 $a = 1 \text{ or } -1$; $b = 1 \text{ or } -1$
if $a = 1 \text{ or } b = -1$
or $a = -1$, $b = 1$
These all the conditions are fulfilled
 $\Rightarrow ab = -1$ Ans.]
Q.2 (A)
 $AB = 0$
 $\Rightarrow \begin{bmatrix} \cos^{2} \theta \cos^{2} \phi + \sin \theta \sin \phi \cos \theta \cos \phi & \cos^{2} \theta \cos \phi \sin \phi + \sin^{2} \theta \sin^{2} \phi \\ \cos^{2} \phi \cos \theta \sin \theta + \sin^{2} \theta \cos \phi \sin \phi & \cos \theta \sin \phi (\cos \theta - \phi) \\ \cos \phi \sin \theta \cos (\theta - \phi) & \sin \theta \sin \phi \cos (\theta - \phi) \end{bmatrix} = 0$
 $\Rightarrow \begin{bmatrix} \cos \theta \cos \phi \cos (\theta - \phi) & \sin \theta \sin \phi \cos (\theta - \phi) \\ \cos \phi \sin \theta \cos (\theta - \phi) & \sin \theta \sin \phi \sin \phi \end{bmatrix} = 0$

$$\Rightarrow \cos(\theta - \phi) = 0 \Rightarrow \theta - \phi = (2n + 1) \frac{\pi}{2}$$

$$|3 AB| = |A| \cdot |3B|_{3 \times 3} = (-1) \cdot 3^{3} |B| = -81$$

Q.24 (4)

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$|A| = 4$$

$$B = \begin{bmatrix} a_{12} + a_{13} & a_{11} + a_{13} & a_{11} + a_{12} \\ a_{22} + a_{23} & a_{21} + a_{23} & a_{21} + a_{22} \\ a_{32} + a_{33} & a_{31} + a_{33} & a_{31} + a_{32} \end{bmatrix}$$

$$|B| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

$$= 4 \times 2 = 8$$
Q.25 (1)
Let $a = \cos^{-1}x, b = \cos^{-1}y, c = \cos^{-1}z, |A| = 0$

$$\Rightarrow \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a + b + c)$$

$$\begin{bmatrix} \frac{1}{2}\{(a - b)^{2} + (b - c)^{2} + (c - a)^{2}\} \end{bmatrix} = 0$$

$$\Rightarrow a + b + c = 0 \Rightarrow x = y = z = 1$$
Q.26 (3)

$$A = \begin{bmatrix} 2 & 0 \\ -a & 2 \end{bmatrix} \Rightarrow adj A = \begin{bmatrix} 2 & 0 \\ a & 2 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{4}\begin{bmatrix} 2 & 0 \\ a & 2 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{4}\begin{bmatrix} 2 & 0 \\ a & 2 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{4}\begin{bmatrix} 2 & 0 \\ a & 2 \end{bmatrix}$$

$$= \frac{1}{16}\begin{bmatrix} 4 & 0 \\ 4a & 4 \end{bmatrix} = \begin{bmatrix} 1/4 & 0 \\ a/4 & 1/4 \end{bmatrix}$$

$$\Rightarrow x = \frac{a}{4} \qquad \therefore \frac{a}{x} = 4.$$
 Ans.]
Q.27 (4)

$$|adj A| = |A|^{2} = 9, and |adj adj(2A)| = |(2A)|^{4}$$

 $= \left(2^{3} | \mathbf{A} |\right)^{4}$ $2^{12} \cdot |\mathbf{A}|^{4} = 2^{12} \cdot 9^{2} = 24^{2}$

Q.23

(2)

67

Q.3 (A)

$$R = P^{T}Q^{8}P = A^{8}$$

Now, $A^{2} = AA = \begin{bmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 3 & -2\sqrt{3}-2 \\ 0 & 1 \end{bmatrix}$
Also, $A^{3} = A^{2}A = \begin{bmatrix} 3 & -2\sqrt{3}-2 \\ 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} (\sqrt{3})^{3} & -6-2\sqrt{3}-2 \\ 0 & 1 \end{bmatrix}$
 $\therefore R = [r_{ij}]_{2 \times 2} = P^{T}Q^{8}P = A^{8}$
 $= \begin{bmatrix} (\sqrt{3})^{8} & - \\ - & - \end{bmatrix} \Rightarrow r_{11} = 81$
Q.4 (D)
 $M(0) = \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \end{bmatrix}; (M(0))^{T}$

$$\mathbf{A}(0) = \begin{bmatrix} \mathbf{a} & \mathbf{0} & -\mathbf{c} \\ \mathbf{b} & \mathbf{c} & \mathbf{0} \end{bmatrix}; \ \left(\mathbf{M}(\mathbf{0})\right)$$

$$= \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$

$$(\mathbf{M}(0)) (\mathbf{M}(0))^{\mathrm{T}} = \begin{bmatrix} a^{2} + b^{2} & bc & -ac \\ bc & a^{2} + c^{2} & ab \\ -ac & ab & b^{2} + c \end{bmatrix}$$

which is symmetric matrix .

Q.5 (A) $|A| \neq 0$ and $|B| \neq 0$ $\Rightarrow |AB| \neq 0$ \therefore AB is non singular.

Q.6 (B)

> AB = ACPre-multiplying $A^{-1} \Rightarrow B = C$ hence A must be invertible matrix.

(C) Q.7

We have A (A + I) =
$$-2I$$

 $\Rightarrow |A (A + I)| = |-2I|$
 $\Rightarrow |A||A + I| = 4 \neq 0$

A is non singular Thus, $|A| \neq 0 \Rightarrow$ \Rightarrow A is correct Also, $A\left(-\frac{1}{2}(A+I)\right) = I$ $A^{-1} = -\frac{1}{2}(A+I)$ \Rightarrow D is correct \Rightarrow Also A = 0 does not satisfy the given equation $A \neq 0$ \Rightarrow $\begin{bmatrix} A^2 + A + 2I = 0 \\ (A^T)^2 + A^T + 2I = 0 \end{bmatrix}$ subtract again again will $A^{T} = B$ $(A^2 - B^2) + (A - B) = 0$ $(\mathbf{A} - \mathbf{B})(\mathbf{A} + \mathbf{B} + \mathbf{I}) = \mathbf{0}$ $\mathbf{A} - \mathbf{B} = \mathbf{0}$ or A + B + I = 0 \Rightarrow

$$\mathbf{Q.8} \qquad (A)$$

$$\mathbf{A} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
Matrix formed by Cofactors of A= C =
$$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\therefore \quad \mathrm{Adj} \, \mathbf{A} = \mathbf{C}^{\mathrm{T}} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} = \mathbf{A}^{\mathrm{T}}$$

$$\mathbf{Q.9} \qquad (C)$$

Q.9

 $kA adj (kA) = |kA| I_n$ kA adj (kA) = $k^n |A| I_n$ $kA adj (kA) = k^n A adj A$ Pre-multiplying A⁻¹ $adj(kA) = k^{n-1} adj A$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix};$$
$$A = BX \Longrightarrow B^{-1}A = B^{-1}(BX) \Longrightarrow B^{-1}A = X$$

$$X = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix};$$
$$X = \frac{1}{2} \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$$

- Q.11 (D) $|\mathbf{F}| \neq 0$ and $|\mathbf{G}| \neq 0$ As we known $[AB]^{-1} = B^{-1} A^{-1}$: $[F(\alpha) G(\beta)]^{-1} = [G(\beta)]^{-1} [F(\alpha)]^{-1}$
- Q.12 (C) $|A| \cdot (adj (A^{-1})) = |A| (|A^{-1}| \cdot (A^{-1})^{-1}) = |AA^{-1}| \cdot A = A.$
- **Q.13** (C)
 - $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix};$ $|\mathbf{A}| = \mathbf{abc}$
 - $adj (A) = \begin{bmatrix} bc & 0 & 0 \\ 0 & ac & 0 \\ 0 & 0 & ab \end{bmatrix};$ $A^{-1} = \frac{adj(A)}{(A)} = \begin{bmatrix} \frac{1}{a} & 0 & 0 \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & \frac{1}{c} \end{bmatrix}$

Q.14 (A)

$$\therefore A^{T} = \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix} \text{ and } A^{-1}$$
$$= \frac{1}{\sec^{2} x} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$$
$$\therefore A^{T} A^{-1} = \frac{1}{\sec^{2} x} \begin{bmatrix} 1 - \tan^{2} x & -2\tan x \\ 2\tan x & 1 - \tan^{2} x \end{bmatrix}$$

$$|A^{T}A^{-1}| = \frac{1}{\sec^{4} x} (1 + \tan^{2} x)^{2} = 1.$$

Q.15 (B)

> $|A| \neq 0$ \Rightarrow a(ed - 0) + b (0 - ce) $|\mathbf{A}| = aed - bce = e(ad - bc) \neq 0$ e = 1 and $ad - bc \neq 0$ ad - bc = 1if [ad = 1, bc = 0]Total = 3ad - bc = -1if [ad = 0, bc = 1]Total = 3Total = 3 + 3 = 6(A)

Q.16

$$\begin{aligned} A^2 - 2A + I &= 0 \implies (A - I)^2 = 0 \\ A^n &= (A - I + I)^n = {^nC_0}(A - I)^n + \dots + {^nC_{n-2}}(A - I)^2 \\ \cdot I^{n-2} + {^nC_{n-1}}(A - I) \cdot I^{n-1} + {^nC_n}I^n \\ &= 0 + 0 + \dots + 0 + n(A - I) + I = nA - (n-1)I \end{aligned}$$

Q.17 (A) $|A - \lambda I| = 0$

$$\begin{bmatrix} 1-\lambda & 0 & 2\\ 0 & 2-\lambda & 1\\ 2 & 0 & 3-\lambda \end{bmatrix} = 0$$

$$\Rightarrow (1-\lambda) [(2-\lambda) (3-\lambda)] + 2[-2(2-\lambda)]$$

$$= 0$$

$$\Rightarrow (1-\lambda) [\lambda^2 - 5\lambda + 6] + 4 (\lambda - 2) = 0$$

$$\Rightarrow \lambda^3 - 6\lambda^2 + 7\lambda + 2 = 0$$

$$\Rightarrow x^3 - 6x^2 + 7x + 2 = 0$$

$$\Rightarrow k = 2$$

Q.18 (C) $(A^2 - A \text{ and } |A| \neq 0$

$$\therefore \mathbf{A}^{-1} \mathbf{A} \mathbf{A} = \mathbf{A}^{-1} \mathbf{A}$$
$$\cdot \mathbf{A}^{-1} \mathbf{A} \mathbf{A} = \mathbf{A}^{-1} \mathbf{A}$$

^

$$\therefore A^{+}A \cdot A = A^{+}A$$

$$\Rightarrow A = I$$

$$\therefore |A| = 1 \text{ and tr } (A) = 3$$

$$\therefore \text{ Given sum} = 1 + \frac{1}{3} + \frac{1}{3^{2}} + \dots$$

$$= \frac{1}{1 - \frac{1}{2}} = \frac{3}{2}.$$

JEE-ADVANCED

3

MCQ/COMPREHENSION/COLUMN MATCHING Q.1 (ABD)

|A| = 18

adj (adj A) =
$$|A|^{n-2}A = 18A = \begin{bmatrix} 54 & 0 & 0\\ 36 & 36 & 0\\ 72 & 90 & 54 \end{bmatrix}$$

 \Rightarrow trace (adj(adjA)) = 144. $|adj A| = |A|^{n-1} = 18^2 = 324$

Q.2 (CD)

$$|A| \neq 0$$

 $|B| \neq 0$
 $9A^{2}B - 6AB = \begin{bmatrix} 9 & 27 \\ -9 & 0 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$;
 $(9A^{2} - 6A + I) = \begin{bmatrix} 6 & 27 \\ -10 & -1 \end{bmatrix} B^{-1}$
 $9A^{2} - 6A + I = \begin{bmatrix} 6 & 27 \\ -10 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix}$

;

$$(3A - I)^{2} = \begin{bmatrix} -6 & 27 \\ -3 & 0 \end{bmatrix}$$
$$|3A - I|^{2} = 81$$
$$|3A - I| = \pm 9$$

Q.3 (ABC)

We have
$$A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = B$$
 (say)
Now, $A^{-n} = B^n = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix}$
 $\Rightarrow \frac{1}{n} A^{-n} = \begin{bmatrix} 1/n & 0 \\ -1 & 1/n \end{bmatrix}$ and $\frac{1}{n^2} A^{-n}$
 $= \begin{bmatrix} 1/n^2 & 0 \\ -1/n & 1/n^2 \end{bmatrix}$
 $\Rightarrow \underset{n \to \infty}{\text{Limit}} \frac{1}{n} A^{-n} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$ and $\underset{n \to \infty}{\text{Limit}} \frac{1}{n^2} A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Q.4 (BC)

We have
$$|A^{-1}| = \begin{vmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{vmatrix} = 2$$
, therefore, $|A| = 1/2$

2

Since
$$A^{-1} = \frac{1}{|A|}$$
 (Adj. A) we get

Adj. A = |A|A⁻¹ =
$$\begin{bmatrix} 1/2 & -1/2 & 0 \\ 0 & -1 & 1/2 \\ 0 & 0 & -1/2 \end{bmatrix}$$

A cannot be skew symmetric as |A| = 0 for all skew symmetric matrices of order $(2n + 1) \times (2n + 1)$

Q.5 (AD)

The elements of main diagonal of skew symmetric matrix are all zero but not necessarily for symmetric matrix.

Q.6 (CD)

(A) Skew-symmetric matrix of even order can be invertible also.

e.g. $\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$

(**B**) If $AB = \mathbf{O} \Rightarrow$ that one of the matrices is zero.

e.g.
$$A = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 5 & 5 \\ 0 & 0 \end{bmatrix} \Rightarrow AB = \mathbf{0}.$$

(C) Minimum number of cyphers in an upper

triangular matrix of order n is $\frac{n(n-1)}{2} = 5050 \Rightarrow$ n = 101. (D) We have | 10 AB | = 10³ |A| |B| = (10³)(5)(2) = 10⁴.

Q.7 (AC)

$$(A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \ bc \neq 0$$

Characteristic equation is |A - xI| = 0

$$\begin{vmatrix} \mathbf{a} - \mathbf{x} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} - \mathbf{x} \end{vmatrix} = 0 \qquad (\mathbf{a} - \mathbf{x}) (\mathbf{d} - \mathbf{x}) - \mathbf{b}\mathbf{c} = 0$$
$$\mathbf{x}^2 - \mathbf{x} (\mathbf{a} + \mathbf{d}) + \mathbf{a}\mathbf{d} - \mathbf{b}\mathbf{c} = 0$$
On comparing with the given equation $\mathbf{x}^2 + \mathbf{k} = 0$
$$\mathbf{a} + \mathbf{d} = 0, \ \mathbf{k} = \mathbf{a}\mathbf{d} - \mathbf{b}\mathbf{c} = |\mathbf{A}|$$

$$(A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

$$A^{2} - 4A + 5I_{2}$$

$$\Rightarrow \begin{bmatrix} -1 & -4 \\ 8 & 7 \end{bmatrix} - \begin{bmatrix} 4 & -4 \\ 8 & 12 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= 0$$

$$C = A - B = \begin{bmatrix} 1 - \alpha & 0 \\ 0 & -2 \end{bmatrix}$$
 is diagonal matrix,

$$\forall \alpha \in R$$

Q.9 (AB)

(A) Given that $AB = \mathbf{O}$, where det. (A) $\neq 0$ (1) So, A^{-1} exists. Now, pre-mutiplying equation (1) with A^{-1} , we get $(A^{-1}A) B = A^{-1}\mathbf{O} \Rightarrow B = \mathbf{O}_{\text{null matrix}}$. (B) Given, det. (A) = 2, det. (B) = 3, det. (C) = 4 So, det. (3ABC) = 3² det. (A) det. (B) det. (C) = 9(2) (3) (4) = 216. **Ans.** (As, A, B, C are square matrices of order 2.) (C) Given, det. (A) = $\frac{1}{2}$ (order of matrix A is 3) As, det. (adj. A) = (det. A)^{n-1}.....(1) place A by A^{-1} in equation (1) and take n = 3, we get **Q.13** (AC)

det (adj. A⁻¹) =
$$|A^{-1}|^2 = \frac{1}{|A|^2} = \frac{1}{\left(\frac{1}{2}\right)^2} = 4$$
. Ans.

(**D**) We know that skew symmetric matrix of odd order is singular. But , if order of skew symmetric matrix is even, then it need not be singular. For example,

$$A = \begin{bmatrix} 0 & -4 \\ 4 & 0 \end{bmatrix} \text{ and } \det. A = 16 \text{ (non - singular)}.$$

Q.10 (ACD)

$$(\mathbf{A}) \ \Delta = \begin{vmatrix} 4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8 \end{vmatrix}$$

(B) Obviously the possible orders are 1×6 , 2×3 , 3×2 and 6×1 .

No. of possible orders is 4

(C) A (adj A) =
$$\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \implies A (adj A) = 10$$

 $\begin{bmatrix} 1 & 0 \\ 1 & 10 \end{bmatrix} \implies A (adj A) = |A|I_n$
 $\therefore |A| = 10$
(D) if C = B'AB
C' = (B'AB)' = B'A (B')' = B'A'B = - B'AB
here A' = -A

Taking
$$C_3 \rightarrow C_3 - (C_1 \alpha - C_2)$$

we get

$$|A| = \begin{vmatrix} a & b & 0 \\ b & c & 0 \\ 2 & 1 & -2\alpha + 1 \end{vmatrix} = (1 - 2\alpha) (ac - b^2)$$

 \therefore non-invertible if $\alpha = \frac{1}{2}$ or if a, b, c are in G.P.

$$\begin{split} \mathbf{M}^{-1} & \text{adj}(\text{adj } \mathbf{M}) = \mathbf{k}^{2}\mathbf{I} \\ \text{Pre-multiplying by } \mathbf{M} \\ & \text{adj}(\text{adj } \mathbf{M}) = \mathbf{k}^{2}\mathbf{M} \\ & \text{det}(\text{adj}(\text{adj } \mathbf{M})) = \text{det}(\mathbf{k}^{2}\mathbf{M}) \end{split}$$

 $(\det M)^{(3-1)^2} = k^6 \det (M)$

 $(\det \mathbf{M})^4 = \mathbf{k}^6 (\det \mathbf{M})$ $(\det \mathbf{M})^3 = \mathbf{k}^6$ $\det \mathbf{M} = \mathbf{k}^2 \implies k^2 = \alpha \implies k^2 = 4$

Q.14 (ABCD)

$$\begin{split} |A| &= 6, & |adj A| = |A|^2 = 36 \\ |adj (adj A)| &= |A|^{(n-1)^2} = 6^4 = 1296 \\ adj (adj A) &= |A|^{(n-2)} \cdot A = |A| \cdot A \quad \{ \because n = 3 \} \\ \therefore & tr (adj (adj A)) = tr (6A) = 36 \\ adj (adj (A) = |A| \cdot A \\ adj (adj (adj A)) &= |adj A| adj A \\ A \cdot adj (adj (adj A)) &= |adj A| A adj A = |adj A| |A| \cdot I_3 \\ \therefore & tr (A adj (adj (adj A))) = 3 \cdot 6^2 \cdot 6 = 2^3 \cdot 3^4 \end{split}$$

Q.15 (ABD)

$$A = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}; adj.$$

$$\mathbf{A} = \begin{pmatrix} \mathbf{d}_2 \mathbf{d}_3 & 0 & 0 \\ 0 & \mathbf{d}_1 \mathbf{d}_3 & 0 \\ 0 & 0 & \mathbf{d}_1 \mathbf{d}_2 \end{pmatrix}$$

Let C = adj. A satisfy $x^3 - 9x + px - 27 = 0$ \therefore Tr. (C) = 9 and det. C = 27 \Rightarrow | adj. A | = 27 \Rightarrow | A |² = 27 \Rightarrow | A | = $3\sqrt{3}$ Also, $|adj. (adj. A)| = |A|^4 = 3^6$ Now, Tr.(adj. A) = 9 given $d_1d_2 + d_2d_3 + d_3d_1 = 9$(1) *.*.. $|A| = d_1 d_2 d_3 = 3\sqrt{3}$(2) and $\frac{1}{d_1} + \frac{1}{d_2} + \frac{1}{d_3} = \frac{9}{3\sqrt{3}} = \sqrt{3} = \text{Tr.}(A^{-1})$ \Rightarrow Also, G.M. of $d_1; d_2; d_3$ is $\sqrt{3}$

and H.M. of
$$d_1, d_2, d_3$$
 is $\sqrt{3}$

$$\Rightarrow$$
 Tr.(A) = 3 $\sqrt{3}$

Q.16 (AC)
Let any symmetric matrix
$$B = \begin{bmatrix} a & x & y \\ x & b & z \\ y & z & c \end{bmatrix}$$
so total matrices possible = 3 ! × 3 ! = 36.

Comprehension # 1 (O No. 16 to 18)

Q.17 (AC)

For homogeneous system infinite solution are possible if $|\mathbf{B}| = 0$ $|\mathbf{B}| = \mathbf{abc} + 2\mathbf{xyz} - \mathbf{by}^2 - \mathbf{cx}^2 - \mathbf{az}^2$ abc = xyz = 0 (one of a,b,c and one of x, y, z is zero) if a = 0z = 0 \Rightarrow $|\mathbf{B}| = 0$ - 4 cases b = 0y = 0 $\Rightarrow |\mathbf{B}| = 0$ - 4 cases c = 0 $\mathbf{x} = \mathbf{0}$ $\Rightarrow |\mathbf{B}| = 0$ - 4 cases so total cases are 12.

Q.18 (AC)

BX = V is always inconsistent. when |B| = 0 so 12 cases

Comprehension # 2 (Q. No. 19 to 21)

Q.19 (A) AB = APremultiplying by B BAB = BA BB = B $B^2 = B$ \Rightarrow B is idempotent similarly on post mutliplying by A $ABA = A^2$ $\Rightarrow AB = A^2$ $A = A^2$ \Rightarrow A is idempotent

Q.20 (D)

For orthogonal matrix AA' = I

$$\Rightarrow \begin{vmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{vmatrix} \begin{vmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & -\beta \\ \gamma & -\gamma & \gamma \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
$$\Rightarrow \begin{vmatrix} 4\beta^2 + \gamma^2 & 2\beta^2 - \gamma^2 & -2\beta^2 + \gamma^2 \\ 2\beta^2 - \gamma^2 & \alpha^2 + \beta^2 + \gamma^2 & \alpha^2 - \beta^2 - \gamma^2 \\ -2\beta^2 + \gamma^2 & \alpha^2 - \beta^2 - \gamma^2 & \alpha^2 + \beta^2 + \gamma^2 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
$$\Rightarrow 4\beta^2 + \gamma^2 = 1, 2\beta^2 - \gamma^2 = 0, -2\beta^2 + \gamma^2 = 0, \alpha^2 - \beta^2 - \gamma^2$$

$$= 0, \alpha^{2} + \beta^{2} + \gamma^{2} = 1$$

$$\therefore \quad \alpha = \pm \frac{1}{\sqrt{2}}, \quad \beta = \pm \frac{1}{\sqrt{6}}, \quad \gamma = \pm \frac{1}{\sqrt{3}}$$

Q.21 (C)

$$= \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \end{bmatrix} \qquad \implies A^{2} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} \qquad \Rightarrow A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\Rightarrow A^2 \text{ is nilpotent}$$

Comprehension # 3 (Q. No. 22 to 24) (A)

$$\underbrace{\begin{bmatrix} 3 & 4 & 5 \end{bmatrix}}_{1\times3} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \\ 3\times3 \end{bmatrix} = \underbrace{\begin{bmatrix} 21 & 20 & 29 \end{bmatrix}}_{\text{Pythagoren triplet}}$$

$$\|\|\text{ly } \begin{bmatrix} 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 5 & 12 & 13 \end{bmatrix}$$

and
$$\begin{bmatrix} 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 15 & 8 & 17 \end{bmatrix}$$

hence question no.(i) answer is (D)

Q.23 (D)

Q.22

 $\begin{array}{l} \mbox{det. A = 1 ; det. B = 1, det. C = 1} \\ \mbox{(verify)} \\ \mbox{det. (AB) = (det. A) (det. B) = (1) (1) = 1} \\ \mbox{det. (BC) = (det. B) (det. C) = (1) (1) = 1} \\ \mbox{det. (CA) = (det. C) (det. A) = (1) (1) = 1} \\ \mbox{det. (ABC) = (det. A) (det. B) (det. C) = 1} \end{array}$

Q.24 (A)

$$T_r(A + B^T + 3C) = \sum a_{ii} + \sum b_{ii} + 3\sum c_{ii} = 5 + 3$$

+ 9 = 17 **Ans. is (A)**

Comprehension # 5 (Q. No.25 to 27) Q.25 (A) $(A + B)C = (A + B)(A + B)^{-1}(A - B)$ $\Rightarrow (A + B)C = A - B \dots(1)$ $C^{T} = (A - B)^{T} ((A + B)^{-1})^{T}$ $= (A + B) ((A + B)^{T})^{-1} \{as | A + B | \neq 0$ $\Rightarrow | (A + B)^{T} | \neq 0 \Rightarrow | A - B | \neq 0 \}$ $= (A + B)(A - B)^{-1} \dots(2)$ (1) & (2) $C^{T} (A + B)C = (A + B)(A - B)^{-1}(A - B)$ $= (A + B) \dots(3)$

Q.26 (B) taking transpose in (3) $C^{T} (A + B)^{T} (C^{T})^{T} = (A + B)^{T}$ $C^{T}(A - B)C = A - B$ (4)

- Q.27 (C) adding (3) and (4) $C^{T} [A + B + A - B]C = 2A$ $C^{T}AC = A$
- Q.28 $(A) \rightarrow (q); (B) \rightarrow (p); (C) \rightarrow (s); (D) \rightarrow (q)$ (A) $|(A^{-1}) adj (B^{-1}) . adj(2A^{-1})| = |A^{-1}| . |adj B^{-1}| . |adj .$

$$2A^{-1} = \frac{1}{|A|} \cdot |B^{-1}|^2 |2A^{-1}|^2 = \frac{2^6}{8} = 8$$

(B) I³ + 3I²A + 3IA² + A³ = I + 3A + 3A + A = I + 7A
 \Rightarrow k = 7

(C) $AB = C \Longrightarrow det (A) det(B) = det (C) \Longrightarrow det(B) =$ -1 $|\Lambda|_{\mathbf{I}} - \mathbf{i}\mathbf{I} \rightarrow \mathbf{k} = |\mathsf{A}| = 8$

(D) A Adj A =
$$|\mathsf{A}| I_3 = kI_3 \Longrightarrow k = |\mathsf{A}| = 8$$

Q.29 (A)
$$\rightarrow$$
 p; (B) \rightarrow s; (C) \rightarrow p; (D) \rightarrow p
R = P^TQ^KP
= P^T(PAP^T)^K P
= P^TPAP^TPAP^T....PAP^T P

 $= A^{K}$ as $PP^{T} = I$ as P is orthogonal

$$R = A^{K} = \begin{bmatrix} 1+2K & -4K \\ K & 1-2K \end{bmatrix}$$
$$||||ly T = P^{T}S^{K}P = B^{K}$$

$$\mathbf{B}^{\mathrm{K}} = \begin{bmatrix} \mathbf{a}^{\mathrm{K}} & \frac{\mathbf{b}(\mathbf{a}^{\mathrm{K}} - 1)}{\mathbf{a} - 1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

NUMERICAL VALUE BASED

Q.1 [5049]

$$AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}$$

$$\begin{bmatrix} ap + bq \\ cp + dq \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}$$

hence $ap + bq = p$ (1)
and $cp + dq = q$ (2)
or $p(a-1) + bq = 0$
 $cp + (d-1)q = 0$
for non trivial solution of p and q
 $\begin{vmatrix} a-1 & b \\ c & d-1 \end{vmatrix} = 0$

$$ad - a - d + 1 - bc = 0$$

 $ad - bc = a + d - 1 = 5049$

[2]
Let
$$A = \text{diag.} (a, b, c)$$

 $\therefore A^{-1} = \text{diag.} \left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$
 $\Rightarrow 2A^2 - B = \lambda I \Rightarrow 2A^2 - 4A^{-1} = \lambda I$
 $\Rightarrow \text{diag.} \left(2a^2 - \frac{4}{a}, 2b^2 - \frac{4}{b}, 2c^2 - \frac{4}{c}\right) = (\lambda, \lambda)$
 $\Rightarrow 2x^2 - \frac{4}{x} = \lambda \Rightarrow 2x^3 - \lambda x - 4 = 0$
 $\Rightarrow a + b + c = 0, abc = 2$
Tr. (A) = 0 and Det.(A) = 2
 $\therefore p + q = 2$

$$\begin{bmatrix} 0035 \end{bmatrix}$$

$$AB = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} =$$

$$\begin{bmatrix} 3p + 2r & 3q + 2s \\ -p + 4r & -q + 4s \end{bmatrix}$$

$$AB = \text{diag} (d_{11}, d_{22})$$

$$\begin{bmatrix} 3p + 2r & 3q + 2s \\ -p + 4r & -q + 4s \end{bmatrix} = \begin{bmatrix} d_{11} & 0 \\ 0 & d_{22} \end{bmatrix}$$

$$3p + 2r = d_{11}; \qquad 3q + 2s = 0 \Rightarrow 2s = -3q$$

$$-q + 4s = d_{22}; \quad -p + 4r = 0 \Rightarrow p = 4r$$

$$\therefore \quad (d_{11} + d_{22}) = 12r + 2r + [-q + 2(-3q)]$$

$$= 14r - 7q = 7(2r - q)$$

$$\therefore |q + 1| + \sqrt{r - 2} = 0 \Rightarrow q = -1, r = 2$$

$$\therefore \quad (d_{11} + d_{22}) = 7(4 + 1) = 35.$$

Q.4 [200]

Q.2

Q.3

$$Consider \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 4 & 2a + 8 \\ 0 & 1 & 8 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 6 & 3a + 24 \\ 0 & 1 & 12 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\therefore \qquad \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}^{n}$$
$$= \begin{bmatrix} 1 & 2n & na + 8\sum_{k=0}^{n-1} k \\ 0 & 1 & 4n \\ 0 & 0 & 1 \end{bmatrix}$$

hence n = 9 and

 $d^2 + bc = 1$

$$2007 = 9a + 8 \sum_{k=0}^{8} k = 9a + 8 \left(\frac{8 \cdot 9}{2}\right)$$
$$2007 = 9a + 32 \cdot 9 = 9(a + 32)$$
$$a + 32 = 223 \implies a = 191$$
hence $a + n = 200$

Q.5 [0005]

Sol.

adj. $A = -A \implies A \cdot adj. A = -A^2$ Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ So, $A^2 = I$ $\Rightarrow \begin{bmatrix} a^2 + bc & (a+d)b \\ (a+d)c & d^2 + bc \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \therefore On comparing, we get $a^2 + bc = 1, \qquad (a+d)b = 0, \qquad (a+d)c = 0.$

Case-I: When $(a + d) \neq 0$ $\Rightarrow \qquad b = 0 = c$ and a = 1, d = 1 or a = -1, d = -1

$$\therefore \qquad \mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

but both rejected as det. A = -1 (given.)

Case-II: When $(a + d) = 0 \implies d = -a$ (i) If $a = 1, d = -1 \implies bc = 0$ For b = 0, c can be -1, 0, 1. For b = 1, c can be 0 only. For b = -1, c can be 0 only. $\implies 5 \text{ matrices}$ (ii) If $a = -1, d = 1 \implies bc = 0$ For b = 0, c = -1, 0, 1. For b = 1, c = 0 only. For b = -1, c = 0 only.

 \Rightarrow 5 matrices (iii) If a = 0, d = 0 \Rightarrow bc = 1 $\therefore \mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ or } \mathbf{A} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ 2 matrices \Rightarrow ÷. N = 5 + 5 + 2 = 12(N - 7) = 12 - 7 = 5 \Rightarrow Q.6 [0039] $\left\{\frac{1}{2}(A - A' + I)\right\}^{-1} \text{ for } A = \begin{vmatrix} -2 & 3 & 4 \\ 5 & -4 & -3 \\ 7 & 2 & 9 \end{vmatrix}$ $\frac{1}{2}(A - A^{T} + I)^{-1} = \begin{bmatrix} 1 & -2 & -3 \\ 2 & 1 & -5 \\ 3 & 5 & 1 \end{bmatrix}^{-1} = \left(\frac{1}{2}B\right)^{-1}$ $\Rightarrow \left|\frac{1}{2}B\right| = \frac{39}{8}$ Adj B = $\frac{1}{4} \begin{bmatrix} 26 & -17 & 7 \\ -13 & 10 & -11 \\ 13 & -1 & 5 \end{bmatrix}^{'} = \frac{1}{4}$ $\begin{bmatrix} 26 & -13 & 13 \\ -17 & 10 & -1 \\ 7 & -11 & 5 \end{bmatrix} \Rightarrow \left| \frac{1}{2} B^{-1} \right| =$ $\frac{2}{39} \begin{bmatrix} 26 & -13 & 13 \\ -17 & 10 & -1 \\ 7 & -11 & 5 \end{bmatrix}$ **Q.7** [0017] $A = \begin{vmatrix} 2 & 0 & -\alpha \\ 5 & \alpha & 0 \\ 0 & \alpha & 3 \end{vmatrix} ; \qquad |A| = \begin{vmatrix} 2 & 0 & -\alpha \\ 5 & \alpha & 0 \\ 0 & \alpha & 3 \end{vmatrix} \neq 0$ $6\alpha - 5\alpha^2 \neq = 0 \quad \Rightarrow$ $\alpha(6-5\alpha) \neq 0$ $\alpha = 0, 6/5$... $\alpha \in \mathbf{R} - \{0, 6/5\}$ For $\alpha = 1$ $A = \begin{vmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{vmatrix} \implies |A| = 6 - 5 = 1 ;$ $AdjA = \begin{vmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{vmatrix}$ $\therefore A^{-1} = \begin{vmatrix} 3 & -1 & 1 \\ -15 & 6 & 5 \\ 5 & -2 & 2 \end{vmatrix}$

Matrices and Determinants

By characteristic equation |A - xI| = 02-x 0 -1 $\begin{vmatrix} 5 & 1-x & 0 \\ 0 & 1 & 3-x \end{vmatrix} = 0$ 0 $x^3 - 6x^2 + 11x - 1 = 0$ \Rightarrow By cayley hamilton theorem $A^3 - 6A^2 + 11A = I$ $A^{-1} = A^2 - 6A + 11.$ I \Rightarrow Q.8 [0006] $A^{3} + 3A^{2}B + 3AB^{2} + B^{3} = (A + B)^{3}$ $\Rightarrow AB = BA$ $= \begin{bmatrix} 4 & a \\ -1 & b \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} =$ AB $\begin{bmatrix} 4+a & -8+4a \\ -1+b & 2+4b \end{bmatrix}$ $BA = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 4 & a \\ -1 & b \end{bmatrix} = \begin{bmatrix} 6 & a-2b \\ 0 & a+4b \end{bmatrix}$ AB = BA \Rightarrow 4 + a = 6 \Rightarrow a = 2 $\Rightarrow -1 + b = 0 \Rightarrow b = 1$ $AB = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} = 6I$ \therefore B = 6A⁻¹ and A = 6B⁻¹ $\Rightarrow A + B = 6A^{-1} + 6B^{-1} = 6(A^{-1} + B^{-1}) \equiv \lambda(A^{-1} + B^{-1})$ ¹) $\Rightarrow \lambda = 6.$ 0.9 [0009] B = adj. (2A) = 2 adj. (A) $|\mathbf{B}| = 4 |adj \mathbf{A}| = 4 |\mathbf{A}|$ \therefore $|\mathbf{A}| = 2$ $ad - bc = 2 \implies$ $ad = 2 \{ : bc = 0 \}$ adj. (A) = $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ $\therefore B = \begin{bmatrix} 2d & -2b \\ -2c & 2a \end{bmatrix}$ $A + B = \begin{bmatrix} a + 2d & -b \\ -c & 2a + d \end{bmatrix}$ \therefore tr.(A + B) = 3a + 3d = 3 (a + d) \therefore |tr. (A + B)| = 3 × 3 = 9 **Ans.** $\{: : a + d = 3 \text{ or } -3\}$

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}; B = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$

$$n(A) = number of elements in A if (XY) is not defined then n(XY) = 0 C = (AB)(B'A)$$

$$AB = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ 11 \end{bmatrix}$$

$$B'A = \begin{bmatrix} 5 & -3 \\ 1 \times 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \\ 2 \times 2 \end{bmatrix} = \begin{bmatrix} -7 & 1 \end{bmatrix}$$

$$C = (AB)(B'A) = \begin{bmatrix} -1 \\ 11 \end{bmatrix} \begin{bmatrix} -7 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -1 \\ -77 & 11 \end{bmatrix}$$

$$\therefore \quad n(C) = 4; \quad n(A) = 4; \quad n(B) = 2$$

$$D = (B'A)(AB) = \begin{bmatrix} -7 & 1 \\ 11 \end{bmatrix} \begin{bmatrix} -1 \\ 11 \end{bmatrix} = (7 + 11) = (18)$$

$$\therefore \qquad |D| = 18 \implies n(D) = 1$$

$$\therefore \qquad \left(\frac{n(C)(D|^2 + n(D))}{n(A) - n(B)} \right)$$

$$= \frac{4(324 + 1)}{4 - 2} = 650$$

KVPY PREVIOUS YEAR'S Q.1 (B) $A = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}; A^{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}; A^{3} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}; I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $I + A + A^{2} + A^{3} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} ; A^{4} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $I + A + A^{2} + A^{3} + \dots A^{2010}$ $(I + A + A^{2} + A^{3}) + A^{4}(I + A + A^{2} + A^{3}) + \dots + A^{2008}(I + A + A^{2})$ $= \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

Q.2

(D)

Q.10

[650]

 $\begin{aligned} P^{2} &= P \\ P^{-1}P^{2} &= P^{-1}P \\ P &= I \\ (I + P)^{n} &= (2P)^{n} = 2^{n}P^{n} \\ &= 2^{n}P \\ &= P + (2^{n} - 1) P \\ &= I + (2^{n} - 1) P \end{aligned}$

(A)

Q.3

$$A^{2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} ad = bc \Rightarrow \frac{a}{b} = \frac{c}{d} = k$$
$$\begin{bmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{bmatrix} a = bk c = dk$$
$$a^{2} + bc = a ; b (a + d) = b$$
$$\Rightarrow a + d = 1$$

Q.4 (C)

Subtracting the given equations we get 5x + 3y = 100

$$x = 20 - \frac{3y}{5}$$

⇒ y is multiple of 5, let y = 5k x = 20 - 3k $\therefore k = 0, 1, 2, \dots, 6$

Hence numbers of solutions are 7.

Q.5 (C)

$$|\mathbf{A}| \neq 0 \Rightarrow \mathbf{a} - \mathbf{b} \neq 0$$

$$\Rightarrow \mathbf{a} \neq \mathbf{b} \qquad \dots(\mathbf{i})$$

Also, $\mathbf{A}^{-1} = \frac{1}{\mathbf{a} - \mathbf{b}} \begin{bmatrix} 1 & -1 \\ \mathbf{b} & \mathbf{a} \end{bmatrix}^{\mathrm{T}}$
$$= \frac{1}{\mathbf{a} - \mathbf{b}} \begin{bmatrix} 1 & -\mathbf{b} \\ -1 & \mathbf{a} \end{bmatrix}$$

Thus, a - b = 1 or -1 ...(ii) So, required number of pairs (a, b) is $101 \times 2 = 202$

Q.6 (B)

Sum of elements in each row of A is 1.

So,
$$\mathbf{A}\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

 $\Rightarrow \mathbf{A}^{-1}\mathbf{A}\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \mathbf{A}^{-1}\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \mathbf{A}^{-1}\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$

Q.7 (B)

$$(2^{n})_{2} = \frac{100...0}{n \text{ times}}$$
$$M^{2} = (2^{60} - 2^{46}) + (2^{30} - 2^{16}) + 2^{31} + 1$$

$$\left(\underbrace{11...1}_{14 \text{ times}}\underbrace{00...0}_{46 \text{ times}} + \underbrace{11...1}_{14 \text{ times}}\underbrace{000...0}_{16 \text{ times}} + 1\underbrace{00...0}_{31 \text{ times}} + 1\right)_2$$

Number of 1's = 14 + 1 + 14 + 1 = 30

JEE-MAIN PREVIOUS YEAR'S Q.1 (4)

$$\mathbf{A} = \begin{bmatrix} 0 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 0 \end{bmatrix}, \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$I + A = \begin{bmatrix} 0 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}, I - A = \begin{bmatrix} 0 & -\tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix},$$

$$(\mathbf{I} - \mathbf{A})' = \begin{bmatrix} 0 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}$$

$$\therefore \quad (\mathbf{I} + \mathbf{A}) \quad (\mathbf{I} - \mathbf{A})' = \mathbf{A}$$

$$\begin{bmatrix} 0 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - \tan^2 \frac{\theta}{2} & 2\tan \frac{\theta}{2} \\ -2\tan \frac{\theta}{2} & 1 - \tan^2 \frac{\theta}{2} \end{bmatrix}$$

$$\therefore a = 1 - \tan^2 \frac{\theta}{2}, b = -2 \tan \frac{\theta}{2}$$
$$\therefore 13(a^2 + b^2) = 13\left(\left(1 - \tan^2 \frac{\theta}{2}\right)^2 + 4 \tan^2 \frac{\theta}{2}\right)$$

$$= 13 \left(1 - \tan^2 \frac{\theta}{2}\right)^2 = 13 \sec^4 \frac{\theta}{2}$$

$$A^{2} = \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix} \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow x^{2} + y^{2} + z^{2} = 1
\Rightarrow x + y + z = 1
\Rightarrow x + y + z = 1
\Rightarrow x + y + z + z = 0
|A|^{2} = |I| \Rightarrow |A| = \pm 1 \Rightarrow 3xyz - (x^{3} + y^{3} + z^{3}) = \pm 1
x^{3} + y^{3} + z^{3} = 3.2 \pm 1 = 7.5
\Rightarrow x^{3} + y^{3} + z^{3} = 7
Q.4 (1)
$$D = \begin{vmatrix} 2 & +3 & 2 \\ 4 & 6 & 2 \\ -1 & 1 & 2 \end{vmatrix} = 2(10) - 3(10) + 2(10) \neq 0
so unique solution
Q.5 (1)
|A| = 4
|2A| = 2^{3} |A| = 8 \times 4
Now R_{2} \rightarrow 2R_{2} + 5R_{3}
|B| = 2 \times 32 = 64
Q.6 [1]
$$\Rightarrow \begin{bmatrix} 1 & -\alpha \\ \alpha & \beta \end{bmatrix} \begin{bmatrix} 1 & \alpha \\ -\alpha & \beta & \alpha^{2} + \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\Rightarrow 1 + \alpha^{2} = 1 \Rightarrow \alpha = 0
\alpha^{2} + \beta^{2} = 1 \Rightarrow \beta^{2} = 1
\therefore \alpha^{4} + \beta^{4} = 0 + 1 = 1
Q.7 (1)
A^{T} = A, B^{T} = -B
Let A^{2B^{2}} - B^{2}A^{2} = P
P^{T} = (A^{2B^{2}} - B^{2}A^{2})^{T} = (A^{2B^{2})^{T} - (A^{2})^{T} (B^{2})^{T}
= B^{2}A^{2} - A^{2}B^{2}
\Rightarrow P is skew-symmetric matrix $\Rightarrow |P| = 0$
Hence PX = 0 have infinite solution
Q.8 (1)

$$A^{2} = \begin{bmatrix} a^{2} + b^{2} & b(a + c) \\ b(a + c) & b^{2} + c^{2} \end{bmatrix}$$

$$x(A^{2}) = [A^{2} + b^{2} + b^{2} + c^{2} = 1
\Rightarrow b = 0 \text{ and } a^{2} + c^{2} = 1
\Rightarrow b = 0 \text{ and } a^{2} + c^{2} = 1
\Rightarrow (a, c) = (1, 0), (-1, 0), (0, 1), (0, -1)
Q.9 [540]
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$$$$$$$$$

 $a^{2} + b^{2} + c^{2} + d^{2} + e^{2} + f^{2} + g^{2} + h^{2} + i^{2} = 7$ Case I : Seven (1's) and two (0's) ${}^{9}C_{2} = 36$ Case- II : One (2) and three (1's) and five (0's) $\frac{9!}{5!3!} = 504$ \therefore Total = 540 Q.10 [17] As PQ = kI $\Rightarrow Q = kP^{-1}$ now $Q = \frac{k}{|P|}$ (adjP)I $\Rightarrow Q = \frac{k}{(20 + 12\alpha)}$ $\begin{bmatrix} - & - & - \\ - & - & (-3\alpha - 4) \\ - & - & - \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\therefore q_{23} = \frac{-k}{8} \Rightarrow \frac{k}{(20+12\alpha)}(-3\alpha-4)$$
$$= \frac{-k}{8} \Rightarrow 2(3\alpha+4) = 5 + 3\alpha$$
$$3\alpha = -3 \Rightarrow \alpha = -1$$
also $|\mathbf{Q}| = \frac{\mathbf{k}^3 |\mathbf{I}|}{|\mathbf{P}|} \Rightarrow \frac{\mathbf{k}^2}{2} = \frac{\mathbf{k}^3}{(20+12\alpha)}$
$$(20+12\alpha) = 2\mathbf{k} \qquad \Rightarrow 8 = 2\mathbf{k} \Rightarrow \mathbf{k} = 4\mathbf{k}$$

$$A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 8 & 0 \\ 3 & 0 & -1 \end{bmatrix}$$
$$A^{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A^{19} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{19} & 0 \\ 3 & 0 & -1 \end{bmatrix}, A^{20} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{20} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

L.H.S.

$$= A^{20} + \alpha A^{19} + \beta A = \begin{bmatrix} 1 + \alpha + \beta & 0 & 0 \\ 0 & 2^{20} + \alpha 2^{19} + 2\beta & 0 \\ 3\alpha + 3\beta & 0 & 1 - \alpha - \beta \end{bmatrix}$$

RHS =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \alpha + \beta = 0 \text{ and}$$

$$2^{20} + \alpha 2^{19} + 2\beta = 4$$

$$2^{20} + \alpha (2^{19} - 2) = 4$$

$$2 = \frac{4 - 2^{20}}{2^{19} - 2} = -2$$

$$\beta = 2 \qquad \Rightarrow (\alpha - \beta) = 4$$

Q.12 (3)

$$A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{4} = 2^{2} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$A^{8} = 64 \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix} = 128 \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$A^{8} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 64 \end{bmatrix}$$

$$\Rightarrow 128 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 64 \end{bmatrix}$$

$$\Rightarrow 128 \begin{bmatrix} x - y \\ -x + y \end{bmatrix} = \begin{bmatrix} 8 \\ 64 \end{bmatrix}$$

$$\Rightarrow x - y = \frac{1}{16} \qquad \dots (1)$$

$$\& \quad -x + y = \frac{1}{2} \qquad \dots (2)$$

$$\Rightarrow From (1) \& (2) : No solution.$$

Q.13 [766]

Let A =
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

diagonal elements of
AA^T, a² + b² + c² + d² + e² + f², g² + b² + c²2
Sum = a² + b² + c² + d² + e² + f² + g² + h² + i² = 9
a, b, c, d, e, f, g, h, i $\in \{0, 1, 2, 3\}$

	Case	No. of Matrices
(1)	All ? 1s	$\frac{9!}{9!} = 1$
(2)	One \rightarrow 3 remaining-0	$\frac{9!}{1! \times 8!} = 9$
(3)	One-2 five-1s three-0s	$\frac{9!}{1!\times5!\times3!} = 8\times63$
(4)	two ? 2's one-1 six-0's	$\frac{9!}{2!\times 6!} = 63 \times 4$

Total no. of ways = $1 + 9 + 8 \times 63 + 63 \times 4$

Q.14 [36]
Let M = (P⁻¹AP - I)²
= (P⁻¹AP)² - 2P⁻¹AP + I
= P⁻¹A²P - 2P⁻¹AP + I
PM = A²P - 2AP + P
= (A² - 2A.I + I²)P

$$\Rightarrow$$
 Det(PM) = Det((A - I)² × P)
 \Rightarrow DetP.DetM = Det(A - I)² × Det(P)
 \Rightarrow Det M = (Det(A - I))²
Now A - i = $\begin{bmatrix} 1 & 7 & w^{2} \\ -1 & -w - 1 & 1 \\ 0 & -w & -w \end{bmatrix}$

$$\begin{split} &\text{Det}(A-I) = (w^2 + w + w) + 7(-w) + w^3 = -6w \\ &\text{Det}((A-I))^2 = 36w^2 \\ \Rightarrow \alpha = 36 \end{split}$$

Q.15 [1]

A = XB

$$\begin{bmatrix}
a_{1} \\
a_{2}
\end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix}
1 \\
1
\end{bmatrix} - 1 \\
k
\begin{bmatrix}
b_{1} \\
b_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
\sqrt{3} a_{1} \\
\sqrt{3} a_{2}
\end{bmatrix} = \begin{bmatrix}
b_{1} - b_{2} \\
b_{1} + kb_{2}
\end{bmatrix}$$

$$b_{1} - b_{2} = \sqrt{3} a_{1} \qquad \dots(1)$$

$$b_{1} + kb_{2} = \sqrt{3} a_{2} \qquad \dots(2)$$
Given, $a_{1}^{2} + a_{2}^{2} = \frac{2}{3} (b_{1}^{2} + b_{2}^{2})$

$$(1)^{2} + (2)^{2}$$

$$(b_{1} + b^{2})^{2} + (b_{1} + kb^{2})^{2} = 3(a_{1}^{2} + a_{2}^{2})^{2}$$

$$a_{1}^{2} + a_{2}^{2} = \frac{2}{3} b_{1}^{2} + \frac{(1 + k^{2})}{3} b_{2}^{2} + \frac{2}{3} b_{1} b_{2}(k - 1)$$

Given,
$$a_1^2 + a_2^2 = \frac{2}{3}b_1^2 + \frac{2}{3}b_2^2$$

On comparing we get
 $\frac{k^2 + 1}{3} = \frac{2}{3} \implies k^2 + 1 = 2$
 $\implies k = \pm 1$ (3)
 $\& \frac{2}{3}(k-1) \ 0 \implies k = 1$ (4)
From both we get $k = 1$

Q.16 (4)

$$\begin{aligned} kx + y + z &= 1\\ x + ky + z &= k\\ x + y + zk &= k^2 \end{aligned}$$
$$\Delta = \begin{vmatrix} K & 1 & 1\\ 1 & K & 1\\ 1 & 1 & K \end{vmatrix} = K(K^2 - 1) - 1(K - 1) + 1(1 - K)\\ = K3 - K - K + 1 + 1 - K\\ = K3 - 3K + 2\\ = (K - 1)2 (K + 2)\\ For K = 1\\ \Delta = D_1 = D_2 = D_3 = 0\\ But for K = -2, at least one out of D_1, D_2, D_3\\ are not zero\\ Hence for no sol^n, K = -2 \end{aligned}$$

Q.17 (3)

 $A^2 = \sin^2 \alpha I$

So,
$$\left| A^2 - \frac{I}{2} \right| = \left(\sin^2 \alpha - \frac{1}{2} \right)^2 = 0$$

 $\Rightarrow \sin \alpha = \pm \frac{1}{\sqrt{2}}$

Q.18 [16]

2A adj (2A) = |2A|I

$$\Rightarrow$$
 A adj (2A) = -4I....(i)
Now, E = |A⁴| + |A¹⁰ - (adj(2A))¹⁰|
= (-2)⁴ + $\frac{|A^{20} - A^{10}(adj 2A)^{10}|}{|A|^{10}}$
= 16 + $\frac{|A^{20} - (A adj(2A))^{10}|}{|A|^{10}}$
= 16 + $\frac{|A^{20} - 2^{10}|}{|A|^{10}}$ (from (1))

Now, characteristic roots of A are 2 and -1. So, characteristic roots of A^{20} are 2^{10} and 1. Hence, $(A^{20} - 2^{10} I) (A^{20} - I) = 0$ $\Rightarrow |A^{20} - 2^{10}I| = 0$ (as $A^{20} \neq I$) $\Rightarrow E = 16$ Ans.

Q.19 [2020]

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$\Rightarrow AB = B$$

$$\Rightarrow (A - I) B = O$$

$$\Rightarrow |A - I| = O, \text{ since } B \neq O$$

$$\begin{vmatrix} (a - 1) & b \\ c & (d - 1) \end{vmatrix} = 0$$

$$ad - bc = 2020$$

Q.20 (2)

$$\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} = 0$$

$$\Rightarrow - (a + b + g) (a^2 + b^2 + g^2 - a^3) = 0$$

$$\Rightarrow - (-a) (a^2 - 2b - b) = 0$$

$$\Rightarrow a(a^2 - 3b) = 0$$

$$\Rightarrow a^2 = 3b \Rightarrow \frac{a^2}{b} = 3$$

Q.21 (2)

$$A + 2B = \begin{pmatrix} 1 & 2 & 0 \\ 6 & 3 & 3 \\ -5 & 3 & 1 \end{pmatrix} \qquad \dots(1)$$
$$2A - B = \begin{pmatrix} 2 & -1 & 5 \\ 2 & 1 & 6 \\ 0 & 1 & 2 \end{pmatrix}$$
$$\Rightarrow 4A - 2B = \begin{pmatrix} 4 & -2 & 10 \\ 4 & -2 & 12 \\ 0 & 2 & 4 \end{pmatrix} \qquad \dots(2)$$

$$(1) + (2) \Rightarrow 5A = \begin{pmatrix} 5 & 0 & 10 \\ 10 & -5 & 15 \\ -5 & 5 & 5 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ -1 & 1 & 1 \end{pmatrix} \text{ and } 2A = \begin{pmatrix} 2 & 0 & 4 \\ 4 & -2 & 6 \\ -2 & 2 & 2 \end{pmatrix}$$
$$\therefore B = \begin{pmatrix} 2 & 0 & 4 \\ 4 & 2 & 6 \\ -2 & 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 5 \\ 2 & 1 & 6 \\ 0 & 1 & 2 \end{pmatrix}$$

B =
$$\begin{pmatrix} 0 & 1 & -1 \\ 2 & -1 & 0 \\ -2 & 1 & 0 \end{pmatrix}$$

tr(A) = 1 - 1 + 1=1
tr(B)= -1
tr(A) = 1 and tr(B) = -1
∴ tr(A) - tr(B) = 2

Q.22 (1)

For non-trivial solution

$$\begin{vmatrix} 4 & \lambda & 2 \\ 2 & -1 & 1 \\ \mu & 2 & 3 \end{vmatrix} = 0$$

 $\Rightarrow 2\mu - 6\lambda + \lambda\mu = 12$ when $\mu = 6$, $12 - 6\lambda + 6\lambda = 12$ which is satisfied by all λ

Q.23 [6]

$$P = \begin{bmatrix} 2 & -1 \\ 5 & -3 \end{bmatrix}$$

$$5I8P = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 16 & -8 \\ 40 & -24 \end{bmatrix} = \begin{bmatrix} -11 & 8 \\ -40 & 29 \end{bmatrix}$$

$$P^{2} = \begin{bmatrix} -1 & 1 \\ -5 & 4 \end{bmatrix}$$

$$P^{3} = \begin{bmatrix} 3 & -2 \\ 10 & -7 \end{bmatrix} \Rightarrow P^{6} = \begin{bmatrix} -11 & 8 \\ -40 & 29 \end{bmatrix} = P^{n}$$

$$\Rightarrow n = 6$$

Q.24 (4)

Q.25 (3)

Q.26 [3125]

Q.28 (1)

- **Q.29** (4)
- **Q.30** (4)

Q.31 [2020]

Q.32 (1)

Q.33 (4)

Q.34 [910]

Q.35 (1)Q.36 [*] Q.37 (3) Q.38 [8] Q.39 (1)Q.40 (2)**Q.41** (4)Q.42 (4)

JEE-ADVANCED

PREVIOUS YEAR'S

Q.1 (C)

(In JEE this question was bonus because in JEE instead of $2n \times 2n$, 3×3 was given and we know that there is no non-singular 3×3 skew symmetric matrix). **Data inconsistent**

Data inconsistent

A 3×3 non-singular matrix cannot be skew-symmetric

However considering M, N matrices as even order, we obtain correct answer.

$$\begin{split} M^2 \, N^2 \, (M^T \, N)^{-1} \, (MN^{-1})^T &= M^2 N^2 \, N^{-1} \, (M^T)^{-1} \, (N^{-1})^T \, M^T \\ \Rightarrow & -M^2 \, N^2 \, N^{-1} \, M^{-1} \, N^{-1} \, M \\ \Rightarrow & -M^2 \, NM^{-1} \, N^{-1} \, M \qquad \Rightarrow -MNN^{-1} \, M \end{split}$$

$$\Rightarrow \ -M^2$$

Comprehension # 1 (Q. No. 2 to 4)

Q.4 (B) $a + 8b + 7c = 0 \qquad \dots \dots (i)$ $9a + 2b + 3c = 0 \qquad \dots (ii)$ $a + b + c = 0 \qquad \dots (iii)$ $\Delta = \begin{vmatrix} 1 & 8 & 7 \\ 9 & 2 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1.(-1) - 8(6) + 7(7) = 0$ Let $c = \lambda$ $\therefore a + 8b = -7\lambda \qquad \Rightarrow a + b = -\lambda$ $\Rightarrow b = \frac{-6}{7}\lambda \& a = \frac{-\lambda}{7}$ $\therefore (a, b, c) \equiv \left(\frac{-\lambda}{7}, \frac{-6\lambda}{7}, \lambda\right) \text{ where } \lambda \in \mathbb{R}$ 2

2 P(a, b, c) lies on the plane
$$2x + y + z = 1$$

 $\therefore \frac{-2\lambda}{7} - \frac{6\lambda}{7} + \lambda = 1 \implies \frac{-\lambda}{7} = 1$
 $\Rightarrow \lambda = -7$
 $\therefore 7a + b + c = 7 + 6 - 7 = 6$
3 $a = 2 \implies \lambda = -14$
 $\therefore b = 12$ & $c = -14$
Now $\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{3}{\omega^c} = \frac{3}{\omega^2} + \frac{1}{\omega^{12}} + 3.\omega^{14} = 3\omega + 1 + 3\omega^2 = 3(\omega + \omega^2) + 1 = -2$
4 $b = 6 \implies \lambda = -7$
 $\Rightarrow a = 1$ & $c = -7$
 $now = ax^2 + bx + c = 0 \implies x^2 + 6x - 7 = 0$
 $\Rightarrow x = -7, 1$
 $\therefore \sum_{n=0}^{\infty} \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)^n = \sum_{n=0}^{\infty} \left(\frac{6}{7}\right)^n = 1 + \frac{6}{7} + \left(\frac{6}{7}\right)^2 + \frac{1}{1 - \frac{6}{7}} = 7$
Q.5 (A)
 $a, b, c \in \{\omega, \omega^2\}$
Let $A = \begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix}$
 $\Rightarrow |A| = 1 - (a + c) \omega + ac\omega^2$
Now
 $|A|$ will be non-zero only when $a = c = \omega$
 $\therefore (a, b, c) \equiv (\omega, \omega, \omega)$ or $(\omega, \omega^2, \omega)$
 \therefore number of non singular matrices = 2
Q.6 [9]

$$Let M = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

then

 $a_{12} = -1$, $a_{11}^{} - a_{12}^{} = 1$ $\Rightarrow a_{11} = 0,$ $a_{11}^{11} + a_{12}^{12} + a_{13}^{13} = 0$ $\Rightarrow a_{13} = 1$ $a_{22} = 2$, $\begin{array}{l} \mathbf{a}_{21} - \mathbf{a}_{22} = 1 \\ \Rightarrow \mathbf{a}_{21} = 3, \end{array}$ $a_{_{21}}+a_{_{22}}+a_{_{23}}=0$ $a_{32}^{21} = 3^{22}$, $\Rightarrow a_{23} = -5$ $\begin{array}{l} \mathbf{a}_{31} - \mathbf{a}_{32} = -1 \\ \Rightarrow \mathbf{a}_{31} = 2, \end{array}$ $a_{31} + a_{32} + a_{33} = 12$ $\Rightarrow a_{33} = 7$

Hence sum of diagonal of M is $= a_{11} + a_{22} + a_{33} = 0 + a_{33} = 0$ 2 + 7 = 9

(D)
Given

$$P = [a_{ij}]_{3\times 3}$$

$$b_{ij} = 2^{i+j} aij$$

$$Q = [b_{ij}]_{3\times 3}$$

$$P = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} |P| = 2;$$

$$Q = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} 4a_{11} & 8a_{12} & 16a_{13} \\ 8a_{21} & 16a_{22} & 32a_{23} \\ 16a_{31} & 32a_{32} & 64a_{33} \end{bmatrix}$$
Determinant of $Q = \begin{vmatrix} 4a_{11} & 8a_{12} & 16a_{13} \\ 8a_{21} & 16a_{22} & 32a_{23} \\ 16a_{31} & 32a_{32} & 64a_{33} \end{vmatrix} = 4$

$$\times 8 \times 16 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 2a_{21} & 2a_{22} & 2a_{23} \\ 4a_{31} & 4a_{32} & 4a_{33} \end{vmatrix}$$

$$= 4 \times 8 \times 16 \times 2 \times 4 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 2^2 \cdot 2^3 \cdot 2^4 \cdot 2^3 \cdot 2^3 \cdot 2^4 \cdot 2^3 \cdot 2^4 \cdot 2^3 \cdot$$

Q.9 (AD)

Q.7

Let
$$A = [a_{ij}]_{3\times 3}$$
; $adj A = \begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$

|adj A| = 1(3 - 7) - 4(6 - 7) + 4(2 - 1) = 4 \Rightarrow $|A|^{3-1} = 4 \Rightarrow |A|^2 = 4 \Rightarrow |A| = \pm 2$

Q.10 (C,D)

(A) $(N^{T}MN)^{T} = N^{T} M^{T} N$ is symmetric if M is symmetric and skew-symmetric if M is skewsymmetric. (B) $(MN - NM)^T = (MN)^T - (NM)^T = NM - MN =$ -(MN - NM) skew symmetric

(C) $(MN)^T = N^T M^T = NM \neq MN$ hence NOT correct

(D) standard result is $adj(MN) = (adjN) (adj M) \neq$ (adjM) (adjN)

Q.11

(CD)

$$M = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
(A)
$$\begin{bmatrix} a \\ b \end{bmatrix} & [b c] \text{ are transpose.}$$
So
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix} \text{ is given}$$

$$\Rightarrow a = b = c$$

$$M = \begin{bmatrix} a & a \\ a & a \end{bmatrix}$$

$$\Rightarrow |M| = 0$$

A is wrong.

(B) [b c] &
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
 are transpose.
So $a = b = c$
B is wrong
(C) $M = \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix} \implies |M| = ac \neq 0$

C is correct

(D)
$$M = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
 given $ac \neq \lambda^2$.

D is correct (C, D) are correct.

Q.12 (AB)

 $MN = NM \& M^2 - N^4 = 0$

$$(M - N^{2})(M + N^{2}) = 0$$

$$M - N^{2} = 0$$

$$M + N^{2} = 0$$

$$M + N^{2} = 0$$

$$M - N^{2} \neq 0$$

$$M - N^{2} = 0$$

$$M - N^{2} = 0$$
In any case $|M + N^{2}| = 0$

- (A) $|M^2 + MN^2| = |M| |M + N^2|$
- = 0 (A) is correct
- (B) If |A| = 0 then AU = 0 will have ∞ solution. Thus $(M^2 + MN^2) U = 0$ will have many 'U'
- (B) is correct
- (C) Obvious wrong.
- (D) If AX = 0 & |A| = 0 then X can be non zero. (D) is wrong

Q.13 (C,D)
(C)
$$(x^4 Z^3 - Z^3 X^4)^T = (X^4 Z^3)^T (Z^3 X^4)^T$$

 $= (Z^T)^3 (X^T)^4 - (X^T)^4 (Z^T)^3$
 $= Z^3 X^4 - X^4 Z^3$
 $= -(X^4 Z^3 - Z^3 X^4)$
(D) $(X^{23} + Y^{23})^T = -X^{23} - Y^{23} \Longrightarrow X^{23} + Y^{23}$ is skew-symmetric

(B, C)

$$|P| = 12\alpha + 20$$
adj $P = \begin{bmatrix} 5\alpha & -10 & -\alpha \\ 3\alpha & -6 & -(3\alpha + 4) \\ 10 & 12 & 2 \end{bmatrix}$

$$\because \frac{Q}{k} = \frac{adj P}{|P|} \qquad \Rightarrow \qquad Q = \frac{k}{|P|} adj P$$

$$\because q_{23} = -\frac{k}{8} \qquad \Rightarrow \frac{(3\alpha + 4)k}{(12\alpha + 20)} = \frac{k}{8} \qquad \Rightarrow \alpha = -1$$
Also $|Q| = \frac{k^3}{|P|} \qquad \Rightarrow k = 4$
Hence, (b, c)

Q.15 (B)

Q.14

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} \implies P^2 = \begin{bmatrix} 1 & 0 & 0 \\ 2 \times 4 & 1 & 0 \\ (1+2)16 & 2 \times 4 & 1 \end{bmatrix}$$
$$\implies P^3 = \begin{bmatrix} 1 & 0 & 0 \\ 3 \times 4 & 1 & 0 \\ (1+2+3) & 3 \times 4 & 1 \end{bmatrix}$$

$$P^{50} = \begin{bmatrix} 1 & 0 & 0 \\ 50 \times 4 & 1 & 0 \\ (1+2+3+\ldots+50)16 & 50 \times 4 & 1 \end{bmatrix}$$
$$\Rightarrow P^{15} = \begin{bmatrix} 1 & 0 & 0 \\ 200 & 1 & 0 \\ 20400 & 200 & 1 \end{bmatrix}$$
Now, P⁵⁰ - Q = I

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 200 & 1 & 0 \\ 20400 & 200 & 1 \end{bmatrix} - \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$20400 - q_{31} = 0 \Rightarrow q_{31} = 20400, 200 - q_{32} = 0$$
$$\Rightarrow q_{32} = 200, 200 - q_{21} = 0 \Rightarrow q_{21} = 200$$

$$\therefore \frac{q_{31} + q_{32}}{q_{21}} = \frac{20600}{200} = 103$$

Q.16 (A,C) $A = B^2 \Longrightarrow |A| = |B| = + ve$

(A)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = 1 (-1) = negative$$

Matrix B can not be possible

$$(B)\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Matrix B can be possible

_

_

$$\operatorname{Ex.} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -1 \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$$

(C)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = -1 = negative$$

Matrix B can not be possible

(D)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1 = \text{possible}$$

Matrix B can be I

Q.17 [1] D = 0

$$\begin{vmatrix} 1 & \alpha & \alpha^{2} \\ \alpha & 1 & \alpha \\ \alpha^{2} & \alpha & 1 \end{vmatrix} = 0$$
$$\begin{vmatrix} (1+\alpha+\alpha^{2}) & (2\alpha+1) & (\alpha^{2}+\alpha+1) \\ \alpha & 1 & \alpha \\ \alpha^{2} & \alpha & 1 \end{vmatrix} = 0$$

$$\begin{pmatrix} 1+\alpha+\alpha^2 \end{pmatrix} \quad \begin{pmatrix} 2\alpha+1 \end{pmatrix} \quad 0 \\ \alpha & 1 & 0 \\ \alpha^2 & \alpha & 1-\alpha^2 \end{bmatrix} = 0 \Rightarrow (1-\alpha^2)$$

 $(1 + \alpha + \alpha^2 - 2\alpha^2 - \alpha) = 0 \implies (1 - \alpha^2) = 0$ $\alpha = -1 \text{ or } 1$ for $\alpha = 1$, system of linear equations has no solution $\therefore \quad \alpha = -1 \text{ so } 1 + \alpha + \alpha^2 = 1$

 $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$ $a^{2} + b^{2} + c^{2} + d^{2} + e^{2} + f^{2} + g^{2} + h^{2} + i^{2} = 5$ Case-I : Five (1's) and four (0,s) ⁹C₅ = 126 Case-II : One (2) and one (1) ⁹C₅ × 2! = 72 \therefore Total = 198

Q.19 (A, C, D)

We find D = 0 & since no pair of planes are parallel, so there are infinite number of solutions.

Let
$$\alpha P_1 + \lambda P_2 = P_3$$

 $\Rightarrow P_1 + 7P_2 = 13P_3$
 $\Rightarrow b_1 + 7b_2 = 13b_3$
(A) $D \neq 0 \Rightarrow$ unique solution of any b_1 , b_2 , b_3
(B) $D = 0$ but $P_1 + 7P_2 \neq 13P_3$
(C) $D = 0$ Also $b_2 = -2b_1$, $b_3 = -b_1$
Satisfies $b_1 + 7b_2 = 13b_3$ (Actually all three planes
are co-incident)

(D)
$$D \neq 0$$

Q.21

Given $M = \alpha l + \beta M^{-1} \implies M^2 - \alpha M - \beta I = O$ By putting values of M and M², we get

$$\alpha(\theta) = 1 - 2\sin^2\theta \cos^2\theta = 1 - \frac{\sin^2 2\theta}{2} \ge \frac{1}{2}$$

Also, $\beta(\theta) = -(\sin^4\theta\cos^4\theta + (1 + \cos^2\theta)(1 + \sin^2\theta))$ = $-(\sin^4\theta\cos^4\theta + 1 + \cos^2\theta + \sin^2\theta + \sin^2\theta\cos^2\theta)$

$$= -(t^2 - t + 2), t = \frac{\sin^2 2\theta}{4} \in \left[0, \frac{1}{4}\right]$$

$$\Rightarrow \beta(\theta) \ge -\frac{37}{16}$$
(A, C, D)

(a, b) $(adjM)_{11} = 2 - 3b = -1 \Rightarrow b = 1$ Also, $(adjM)_{22} = -3a = -6 \Rightarrow a = 2$

Now, det M =
$$\begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{vmatrix} = -2$$

 $\Rightarrow \det(adjM^2) = (\det M^2)^2$ $= (\det M)^4 = 16$

$$\begin{split} & \text{Also } M^{-1} = \frac{adjM}{det M} \\ \Rightarrow & adjM = - 2M^{-1} \\ \Rightarrow & (adjM)^{-1} = (M^{-1})^{-1} det(M^{-1}) \\ &= \frac{1}{det M} M = \frac{-M}{2} \\ & \text{Hence, } (adjM)^{-1} + adj(M^{-1}) = -M \\ & \text{Further, } MX = b \\ & \Rightarrow X = M^{-1}b = \frac{-adjM}{2}b \\ &= -\frac{-1}{2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \\ &= \frac{-1}{2} \begin{bmatrix} -2 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \\ &\Rightarrow (\alpha, \beta, \gamma) = (1, -1, 1) \\ & (B,C,D) \\ & \text{Let } Q = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} \\ & X = \sum_{k=1}^{6} (P_k Q P_k^T) \\ & X^T = \sum_{k=1}^{6} (P_k Q P_k^T)^T = X \\ & X \text{ is symmetric} \\ & \text{Let } R = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} \\ & XR = \sum_{k=1}^{6} P_k Q P_k^T R \\ & . \end{split}$$

$$\Rightarrow XR = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix} = 30R \Rightarrow \alpha = 30.$$

Trace $X = Trace \left(\sum_{k=1}^{6} P_{K} Q P_{K}^{T}\right) = \sum_{k=1}^{6} Trace$
 $(P_{K} Q P_{K}^{T}) = 6 (Trace Q) = 18$
 $X \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 30 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $\Rightarrow (X - 30 I) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0 \Rightarrow |X - 30 I| = 0$
 $\Rightarrow X - 30 I$ is non-invertible
Q.23 (C,D)

$$XR = \sum_{k=1}^{6} P_k Q P_k^T R .$$

$$\left[\because P_K^T R = R \right]$$

$$= \sum_{K=1}^{6} P_k Q R . = \left(\sum_{k=1}^{6} P_K \right) Q R$$

$$\sum_{k=1}^{6} P_K = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \qquad QR = \begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix}$$

 $det(\mathbf{R}) = det(\mathbf{PQP}^{-1}) = (det \mathbf{P}) (det \mathbf{Q}) \left(\frac{1}{det \mathbf{P}}\right)$ $= det \mathbf{Q}$ $= 48 - 4x^{2}$ **Option - 1 :** for x = 1 det (\mathbf{R}) = 44 \neq 0 $\therefore \text{ for equation } \mathbf{R} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ We will have trivial solution $\alpha = \beta = \gamma = 0$ **Option - 2 :**

PQ = QP $PQP^{-1} = Q$ R = QNo value of x.

Option - 3 :

$$\det \begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 5 \end{bmatrix} + 8$$
$$= (40 - 4x^{2}) + 8 = 48 - 4x^{2} = \det R \forall x \in R$$

Option - 4 :

$$R = \begin{bmatrix} 2 & 1 & 2/3 \\ 0 & 4 & 4/3 \\ 0 & 0 & 6 \end{bmatrix}$$
$$(R - 61) \begin{bmatrix} 1 \\ a \\ b \end{bmatrix} = O$$
$$\Rightarrow -4 + a + \frac{4b}{3} = 0$$

Q.25 [5]

M-I

 $\Rightarrow a = 2$

a + b = 5

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 $A^2 = \begin{bmatrix} a^2 + bc & ab + bc \\ ac + dc & bc + d^2 \end{bmatrix}$
 $A^3 = \begin{bmatrix} a^3 + 2abc + bdc & a^2b + abd + b^2c + bd^2 \\ a^2c + adc + bc^2 + d^2c & abc + 2bcd + d^3 \end{bmatrix}$
Given trace (A) = a+d=3
and trace (A³) = a³+d³+3abc+3bcd = -18
 $\Rightarrow a^3+d^3+3bc(a+d)=-18$
 $\Rightarrow a^3+d^3+9bc=-18$
 $\Rightarrow (a+d)((a+d)^2-3ad)+9bc = -18$
 $\Rightarrow 3(9-3ad)+9bc=-18$
 $\Rightarrow ad-bc=5=determinant of A$
M-II
 $\begin{bmatrix} a & b \end{bmatrix}$

b = 3

Q.26

$$A = \begin{vmatrix} a & b \\ c & d \end{vmatrix}; \quad \Delta = ad - bc$$

 $|A-\lambda I| = (a-\lambda)(d-\lambda)-bc$ $=\lambda^2-(a+d)\lambda+ad-bc$ $=\lambda^2-3\lambda+\Delta$ $\Rightarrow O = A^2 - 3A + \Delta I$ $\Rightarrow A^2 = 3A - \Delta I$ $\Rightarrow A^3=3A^2-\Delta A$ $=3(3A-\Delta I)-\Delta A$ $=(9-\Delta)A-3\Delta I$ $= (9 - \Delta) \begin{bmatrix} a & b \\ c & d \end{bmatrix} - 3\Delta \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \therefore trace A³=(9- Δ)(a+d)-6 Δ $-18 = (9 - \Delta)(3) - 6\Delta$ \Rightarrow $= 27 - 9\Delta$ \Rightarrow 9∆**=**45 $\Rightarrow \Delta = 5$ (A,B,D) $PEP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 8 & 13 & 18 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 \\ 8 & 13 & 18 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 8 & 18 & 13 \\ 2 & 4 & 3 \end{pmatrix}$ $\mathbf{P}^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (B) $|EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}|$ $|\mathbf{E}| = 0$ and $|\mathbf{F}| = 0$ and $|\mathbf{Q}| \neq 0$ $|EQ| = |E||Q| = 0, |PFQ^{-1}| = \frac{|P||F|}{|Q|} = 0$ $T = EQ + PFQ^{-1}$ $TQ = EQ^2 + PF = EQ^2 + P^2EP = EQ^2 + EP = E(Q^2 + P)$ $|TQ| = |E(Q^2 + P)| \Longrightarrow |T||Q| = |E||Q^2 + P| = 0 \Longrightarrow |T| = 0$ (as $|\mathbf{Q}| \neq 0$) (C) $|(EF)^3| > |EF|^2$ Here 0 > 0 (false) (D) as $P^2 = I \Longrightarrow P^{-1} = P$ so $P^{-1}FP = PFP = PPEPP = E$

$$P^{-1} EP + F \Longrightarrow PEP + F = 2PEP$$
$$Tr(2PEP) = 2Tr(PEP) = 2Tr(EPP) = 2Tr(E)$$

so $E + P^{-1} FP = E + E = 2E$

85

Determinants

EXERCISES

Q.3

(2)

ELEMENTRY

Q.1 (3)

 $\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = \begin{vmatrix} 0 & a-b & a^{2}-b^{2} \\ 0 & b-c & b^{2}-c^{2} \\ 1 & c & c^{2} \end{vmatrix}, \begin{array}{c} R_{1} \rightarrow R_{1}-R_{2} \\ by & R_{2} \rightarrow R_{2}-R_{3} \end{aligned}$

$$= \frac{(a-b)(b-c)}{\begin{vmatrix} 0 & 1 & a+b \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix}}$$

$$= \frac{(a-b)(b-c)}{\begin{pmatrix} 0 & 0 & a-c \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{pmatrix}} by R_1 \to R_1 - R_2$$

$$= \frac{(a-b)(b-c)(a-c)}{\begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix}}$$

$$= (a-b)(b-c)(a-c).(-1) = (a-b)(b-c)(c-a)$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 4 & 3 & 6 \end{vmatrix}$$
 by $C_1 \rightarrow C_1 + C_2$

$$= \begin{vmatrix} 1 & 2 & 1 \\ 1 & 5 & 3 \\ 1 & 9 & 6 \end{vmatrix} \text{ by } C_2 \to C_2 + C_3$$
$$= \begin{vmatrix} 3 & 1 & 1 \\ 6 & 2 & 3 \\ 10 & 3 & 6 \end{vmatrix} \text{ by } C_1 \to C_1 + C_2 + C_3$$

But $\neq \begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 3 & 6 \end{bmatrix}$

$$\begin{vmatrix} 1 & \omega & \omega^2 \\ 2 & z \end{vmatrix} = \begin{vmatrix} 1 + \omega + \omega^2 \\ z & z \end{vmatrix}$$

$$\begin{vmatrix} \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} = \begin{vmatrix} 1+\omega+\omega^2 & \omega^2 & 1 \\ 1+\omega+\omega^2 & 1 & \omega \end{vmatrix}$$

 $\omega \omega^2$

$$= \begin{vmatrix} 0 & \omega & \omega^{2} \\ 0 & \omega^{2} & 1 \\ 0 & 1 & \omega \end{vmatrix} = 0$$

Q.4 (4)
by
$$C_1 \rightarrow C_1 + C_2 + C_3$$

we have $(9+x) \begin{vmatrix} 1 & 3 & 5 \\ 1 & x+2 & 5 \\ 1 & 3 & x+4 \end{vmatrix} = 0$

$$\Rightarrow (x+9) \begin{vmatrix} 0 & 1-x & 0 \\ 0 & -(1-x) & 1-x \\ 1 & 3 & x+4 \end{vmatrix} = 0$$

Q.5 (4)

$$\begin{vmatrix} a+b & a+2b & a+3b \\ a+2b & a+3b & a+4b \\ a+4b & a+5b & a+6b \end{vmatrix} = \begin{vmatrix} a+b & a+2b & a+3b \\ b & b & b \\ 2b & 2b & 2b \end{vmatrix} = 0$$

 $\begin{cases} by & R_2 \rightarrow R_2 - R_1 \\ R_3 \rightarrow R_3 - R_2 \end{cases}$

Trick: Putting a = 1 = b. The determinant will be

 $\begin{vmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{vmatrix} = 0$. Obviously answer is (d)

Note : Students remember while taking the values of a, b, c,..... that for there values, the options (a), (b), (c) and (d) should not be identical.

Q.6 (2)

The cofactor of element 4, in the 2nd row and 3^{rd} column is

$$= (-1)^{2+3} \begin{vmatrix} 1 & 3 & 1 \\ 8 & 0 & 1 \\ 0 & 2 & 1 \end{vmatrix} = - \{1(-2) - 3 (8 - 0) + 1.16\} =$$

Q.7 (2)

10.

(2) We know that

$$\Delta \Delta' = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}$$

$$= \begin{vmatrix} 2a_1A_1 & 0 & 0 \\ 0 & 2a_2A_2 & 0 \\ 0 & 0 & 2a_3A_3 \end{vmatrix} = \begin{vmatrix} \Delta & 0 & 0 \\ 0 & \Delta & 0 \\ 0 & 0 & \Delta \end{vmatrix} = \Delta^3$$

 $\Rightarrow \Delta' = \Delta^2$

(3)

$$C_{21} = (-1)^{2+1}(18+21) = -39$$

 $C_{22} = (-1)^{2+2}(15+12) = 27$
 $C_{23} = (-1)^{2+3}(-35+24) = 11$

Q.9 (2)

Q.8

Minor of $-4 = \begin{vmatrix} -2 & 3 \\ 8 & 9 \end{vmatrix} = -42$, $9 = \begin{vmatrix} -1 & -2 \\ -4 & -5 \end{vmatrix} = -3$

and cofactor of - $4 = (-1)^{2+1}(-42) = 42$,

cofactor of $9 = (-1)^{3+3}(-3) = -3$.

Q.10 (3)

(3)
$$\Delta = \begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix}$$

$$= \frac{-2}{\begin{vmatrix} 0 & c^2 & b^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix}}, by R_1 \rightarrow R_1 - (R_2 + R_3)$$

$$= -2 \begin{vmatrix} 0 & c^2 & b^2 \\ b^2 & a^2 & 0 \\ c^2 & 0 & a^2 \end{vmatrix}, \text{ by } \begin{array}{c} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - R_1 \end{vmatrix}$$
$$= -2\{-c^2(b^2a^2) + b^2(-c^2a^2)\} = 4a^2b^2c^2 .$$

Trick: Put a = 1, b = 2, c = 3 so that the option give different values.

Q.11 (2)

$$\begin{vmatrix} y+z & x & y \\ z+x & z & x \\ x+y & y & z \end{vmatrix} = (x+y+z) \begin{vmatrix} 2 & 1 & 1 \\ z+x & z & x \\ x+y & y & z \end{vmatrix}$$

by
$$R_1 \rightarrow R_1 + R_2 + R_3$$

$$= (x + y + z) \begin{vmatrix} 1 & 1 & 1 \\ x & z & x \\ x & y & z \end{vmatrix}; by C_1 \to C_1 - C_2$$

=
$$(x + y + z).\{(z^2 - xy) - (xz - x^2) + (xy - xz)\}$$

= $(x + y + z)(x - z)^2 \implies k = 1$.

Trick : Put x = 1, y = 2, z = 3, then

$$\begin{vmatrix} 5 & 1 & 2 \\ 4 & 3 & 1 \\ 3 & 2 & 3 \end{vmatrix} = 5(7) - 1(12 - 3) + 2(8 - 9)$$

= $35 - 9 - 2 = 24$
and $(x + y + z)(x - z)^2 = (6)(-2)^2 = 24$
 $\therefore k = \frac{24}{24} = 1$

Q.12 (2)

$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = \lambda$$

Applying $C_2 \rightarrow C_2 - C_1$, and $C_3 \rightarrow C_3 - C_1$,

$$\begin{vmatrix} 1+a & -a & -a \\ 1 & b & 0 \\ 1 & 0 & c \end{vmatrix}$$

On expanding w.r.t. R_3 , $ab + bc + ca + abc = \lambda$(i) Given, $a^{-1} + b^{-1} + c^{-1} = 0$ $\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0 \Rightarrow ab + bc + ca = 0$ $\Rightarrow \lambda = abc$, (From equation (i)).

Q.13 (2)

Applying $C_1 \rightarrow C_1 + C_2 + C_3$

$$f(x) = \begin{vmatrix} 1 & (1+b^2)x & (1+c^2)x \\ 1 & 1+b^2x & (1+c^2)x \\ 1 & (1+b^2)x & 1+c^2x \end{vmatrix},$$

$$(:: a^2 + b^2 + c^2 + 2 = 0)$$

[Applying $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$]

$$= \begin{vmatrix} 1 & (1+b^2)x & (1+c^2)x \\ 0 & 1-x & 0 \\ 0 & 0 & 1-x \end{vmatrix} = (1-x)^2.$$

Hence degree of f(x) = 2.

Q.14 (4)

$$\begin{vmatrix} 4+x^2 & -6 & -2 \\ -6 & 9+x^2 & 3 \\ -2 & 3 & 1+x^2 \end{vmatrix} = x^4(14+x^2)$$

 $= x \cdot x^{3} (14 + x^{2})$

Hence, the determinant is divisible by x, x^3 and $(14 + x^2)$, but not divisible by x^5 .

ı.

$$\begin{vmatrix} 0 & b^{3} - a^{3} & c^{3} - a^{3} \\ a^{3} - b^{3} & 0 & c^{3} - b^{3} \\ a^{3} - c^{3} & b^{3} - c^{3} & 0 \end{vmatrix}$$
$$(b^{3} - a^{3})(c^{3} - a^{3})\begin{vmatrix} 0 & 1 & 1 \\ a^{3} - b^{3} & 1 & 1 \\ a^{3} - c^{3} & 1 & 1 \end{vmatrix} = 0$$

 $[C_2 \rightarrow C_2 - C_1 \text{ and } C_3 \rightarrow C_3 - C_1]$ and then taking out common from IInd column $(b^2 - a^3)$ and ($c^3 - a^3$) from IIIrd column].

Q.16 (3)

Q.17

$$\begin{vmatrix} 1+\sin^2\theta & \sin^2\theta & \sin^2\theta \\ \cos^2\theta & 1+\cos^2\theta & \cos^2\theta \\ 4\sin 4\theta & 4\sin 4\theta & 1+4\sin 4\theta \end{vmatrix} = 0$$
Using $C_1 \rightarrow C_1 - C_2, C_2 \rightarrow C_2 - C_3$

$$\Rightarrow \begin{vmatrix} 1 & 0 & \sin^2\theta \\ -1 & 1 & \cos^2\theta \\ 0 & -1 & 1+4\sin 4\theta \end{vmatrix} = 0$$

$$\Rightarrow 2(1+2\sin 4\theta) = 0 \Rightarrow \sin 4\theta = \frac{-1}{2}$$
(2)

$$f(x) = 2(x-3)(x-5) ; \begin{vmatrix} 1 & x+3 & 3(x^2+3x+9) \\ 1 & x+5 & 4(x^2+5x+25) \\ 1 & 1 & 3 \end{vmatrix}$$

(Taking out (x-3), (x-5) and 2 from Ist row, IInd row and IIrd column respectively)

$$f(x) = 2(x-3)(x-5) \begin{vmatrix} 0 & (x+2) & 3(x^2+3x+8) \\ 0 & 2 & x^2+11x+73 \\ 1 & 1 & 3 \end{vmatrix},$$

$$(R_1 \rightarrow R_1 - R_3 \text{ and } R_2 \rightarrow R_2 - R_1)$$

= 2(x-3)(x-5)[1(x+2)
(x²+11x+73)-6(x²+3x+8)]
= 2(x²-8x+15)(x³+13x²+95x
+146-6x²-18x-48)
= 2(x²-8x+15)(x³+7x²+77x+98)
= 2(x⁵-x⁴+36x³-413x²+371x+1470)
f(1) = 2928, f(3) = 0, f(5) = 0
 \therefore f(1).f(3)+f(3).f(5)+f(5).f(1) = 0+0+0
= 0 = f(3)

Q.18 (4)

$$\begin{vmatrix} y+z & x-z & x-y \\ y-z & z+x & y-x \\ z-y & z-x & x+y \end{vmatrix} = \begin{vmatrix} y+z & x-z & x-y \\ 2y & 2x & 0 \\ 2z & 0 & 2x \end{vmatrix}$$
$$R_{2} \rightarrow R_{2} + R_{1} \text{ and } R_{3} \rightarrow R_{3} + R_{1}$$
$$= 4\begin{vmatrix} y+z & x-z & x-y \\ y & x & 0 \\ z & 0 & x \end{vmatrix}$$
$$= 4[(y+z)(x^{2}) - (x-z)(xy) + (x-y)(-zx)]$$
$$= 4[x^{2}y + zx^{2} - x^{2}y + xyz - zx^{2} + xyz] = 8xyz$$
Hence k = 8

It has a non-zero solution if

$$\begin{vmatrix} 1 & k & -1 \\ 3 & -k & -1 \\ 1 & -3 & 1 \end{vmatrix} = 0 \implies -6k + 6 = 0 \implies k = 1$$

Q.20 (4)

Q.21 (1) For the equation to be inconsistent D = 0

$$\therefore \quad \mathbf{D} = \begin{vmatrix} 1 & 2 & -3 \\ 0 & 0 & k+3 \\ 2k+1 & 0 & 1 \end{vmatrix} = 0 \Longrightarrow k = -3 \qquad \text{and}$$

$$\mathbf{D}_{1} = \begin{vmatrix} 1 & 2 & -3 \\ 3 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} \neq \mathbf{0}$$

So that system is inconsistent for k = -3.

Q.22 (4)

If the given system of equations has a non-trivial

solution, then
$$\begin{vmatrix} 3 & -2 & 1 \\ \lambda & -14 & 15 \\ 1 & 2 & 3 \end{vmatrix} = 0 \Longrightarrow \lambda = 29$$
.

Q.23 (1)

For unique solution of the given system $D \neq 0$

 $\begin{vmatrix} 1 & 1 & 1 \\ 5 & -1 & \mu \\ 2 & 3 & -1 \end{vmatrix} \neq 0$

So this depends on μ only.

Q.24 (1)

Given system of equation can be written as

 $\begin{bmatrix} 1 & 1 & 1 \\ 3 & -1 & 2 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ -18 \end{bmatrix}$

On solving the above system we get the unique solution x = -10, y = -4, z = 16.

$$\begin{vmatrix} 1 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 0 \Longrightarrow 1 + a(a^2) = 0 \Longrightarrow a^3 = -1 \Longrightarrow a = -1.$$

JEE-MAIN OBJECTIVE QUESTIONS Q.1 (2)

$$\Delta_1 = \Delta_0^2$$

$$\begin{split} \Delta_2 &= \Delta_1^2 = \Delta_0^4 \\ \Delta_3 &= \Delta_2^2 = \Delta_0^8 \\ \Delta_4 &= \Delta_3^2 = \Delta_0^{16} \end{split}$$

and so on $\Delta_n = \Delta_0^{2^n}$ Ans.

(4)
Clearly,
$$f(\theta) = 2 \sin^2 \theta - 1 = -\cos 2\theta$$

 \therefore $f(\theta) = 0 \Rightarrow \cos 2\theta = 0$
 $\Rightarrow \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
So, number of solution are 4.

Q.3 (4)

Q.2

We have
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + \cos \theta & 1 \\ 1 & 1 & 1 + \tan \theta \end{vmatrix} = 0$$

Apply $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$.

We get
$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & \cos \theta & 0 \\ 0 & 0 & \tan \theta \end{vmatrix} = 0$$

$$\therefore \quad \tan \theta \cdot \cos \theta = 0 \text{ (on expanding along C_1)}$$
But $\cos \theta = 0$ (Rejected)
$$\Rightarrow \quad \tan \theta = 0$$

$$\Rightarrow \quad \theta = n\pi, n \in I$$

$$\theta = \pi, 2\pi, 3\pi.$$

Q.4 (1)

$$\begin{vmatrix} 3u^{2} & 2u^{3} & 1 \\ 3v^{2} & 2v^{3} & 1 \\ 3w^{2} & 2w^{3} & 1 \end{vmatrix} = 0$$

$$R_{1} \rightarrow R_{1} - R_{2} \text{ and } R_{2} \rightarrow R_{2} - R_{3}$$

$$\Rightarrow \begin{vmatrix} u^{2} - v^{2} & u^{3} - v^{3} & 0 \\ v^{2} - w^{2} & v^{3} - w^{3} & 0 \\ w^{2} & w^{3} & 1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} u + v & u^{2} + v^{2} + vu & 0 \\ v + w & v^{2} + w^{2} + vw & 0 \\ w^{2} & w^{3} & 1 \end{vmatrix} = 0$$

$$R_{1} \rightarrow R_{1} - R_{2}$$

$$\Rightarrow \begin{vmatrix} u - w & (u^{2} - w^{2}) + v(u - w) & 0 \\ v + w & v^{2} + w^{2} + vw & 0 \\ w^{2} & w^{3} & 1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & u + w + v & 0 \\ w^{2} & w^{3} & 1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} v^{2} + w^{2} + w^{2} + vw & 0 \\ w^{2} & w^{3} & 1 \end{vmatrix} = 0$$

$$\Rightarrow (v^{2} + w^{2} + vw) - (v + w) [(v + w) + u] = 0$$

$$\Rightarrow v^{2} + w^{2} + vw = (v + w)^{2} + u (v + w)$$

$$\Rightarrow uv + vw + wu = 0$$
Ans.

Q.5

(3)

Consider the det. B, using $R_1 \rightarrow R_1 + R_2 + R_3$

$$B = 2 \begin{vmatrix} a+p+x & b+q+y & c+r+z \\ a+x & b+y & c+z \\ a+p & b+q & c+r \end{vmatrix}$$

using $R_2 \rightarrow R_2 - R_1$ and
 $R_3 \rightarrow R_3 - R_1$
$$= 2 \begin{vmatrix} a+p+x & b+q+y & c+r+z \\ -p & -q & -r \\ -x & -y & -z \end{vmatrix}$$

using $R_1 \rightarrow R_1 + R_2 + R_3$
 $B = 2 \det A = 2 \cdot 6 = 12$

Q.6 (1)

$$\begin{bmatrix} -1 & 2 & 1 \\ 3+2\sqrt{2} & 2+2\sqrt{2} & 1 \\ 3-2\sqrt{2} & 2-2\sqrt{2} & 1 \end{bmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1 \& R_3 \rightarrow R_3 - R_1$
$$\begin{bmatrix} -1 & 2 & 1 \\ 4+2\sqrt{2} & 2\sqrt{2} & 0 \end{bmatrix} = 1 (-8\sqrt{2} - 0) = 1$$

$$= \begin{bmatrix} 4+2\sqrt{2} & 2\sqrt{2} & 0\\ 4-2\sqrt{2} & -2\sqrt{2} & 0 \end{bmatrix} = 1(-8\sqrt{2} - 8 - 8\sqrt{2} + 8)$$
$$= -16\sqrt{2}$$

So absolute value is $16\sqrt{2}$

 α , β , γ are roots of $x^3 + px + q = 0$

$$\therefore \quad \alpha + \beta + \gamma = 0 \text{ Here } \begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$$
Applying $C_1 \rightarrow C_1 + C_2 + C_3$

$$(\alpha + \beta + \gamma) \begin{vmatrix} 1 & \beta & \gamma \\ 1 & \gamma & \alpha \\ 1 & \alpha & \beta \end{vmatrix} = 0$$

Q.8 (4)

$$\begin{vmatrix} (a^{x} + a^{-x})^{2} & (a^{x} - a^{-x})^{2} & 1 \\ (b^{y} + b^{-y})^{2} & (b^{3} - b^{-y})^{2} & 1 \\ (c^{2} + c^{-2})^{2} & (c^{2} - c^{-2})^{2} & 1 \\ Applying C_{1} \rightarrow C_{1} - C_{2} \\ \begin{vmatrix} 4 & (a^{x} - a^{-x})^{2} & 1 \\ 4 & (b^{y} - b^{-y})^{2} & 1 \\ 4 & (c^{z} - c^{-z})^{2} & 1 \end{vmatrix} = 0$$

Q.9

(2)

Taking two common, applying $C_1 \rightarrow C_1 + C_2 + C_3$

$$= \begin{vmatrix} 2(a_1 + b_1 + c_1) & c_1 + a_1 & a_1 + b_1 \\ 2(a_2 + b_2 + c_2) & c_2 + a_2 & a_2 + b_2 \\ 2(a_3 + b_3 + c_3) & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1 \& C_3 \rightarrow C_3 - C_1$

$$\begin{aligned} &= 2 \begin{vmatrix} a_1 + b_1 + c_1 & -b_1 & -c_1 \\ a_2 + b_2 + c_2 & -b_2 & -c_2 \\ a_3 + b_3 + c_3 & -b_3 & -c_3 \end{vmatrix} \\ &\text{Applying } C_1 \to C_1 + C_2 + C_3 \\ &= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \\ &\text{Q.10} \quad (3) \\ &\Delta &= \begin{vmatrix} x & x + y & x + y + z \\ 2x & 5x + 2y & 7x + 5y + 2z \\ 3x & 7x + 3y & 9x + 7y + 3z \end{vmatrix} = -16 \\ &\text{Applying } R_2 \to R_2 - 2R_1 \& R_3 \to R_3 - 3R_1 \\ &\Delta &= \begin{vmatrix} x & x + y & x + y + z \\ 0 & 3x & 5x + 3y \\ 0 & 4x & 6x + 4y \end{vmatrix} = -16 \\ &\text{Applying } R_3 \to R_3 - R_2 \\ &\begin{vmatrix} x & x + y & x + y + z \\ 0 & 3x & 5x + 3y \\ 0 & x & 5x + 3y \\ 0 & x & 5x + 3y \\ 0 & x & 5x + 3y \end{vmatrix} = -16 \\ &\text{Applying } R_2 \to R_2 - 3R_1 \\ &\begin{vmatrix} x & x + y & x + y + z \\ 0 & 3x & 5x + 3y \\ 0 & x & x + y \end{vmatrix} = -16 \\ &\text{Applying } R_2 \to R_2 - 3R_1 \\ &\begin{vmatrix} x & x + y & x + y + z \\ 0 & 0 & 2x \\ 0 & x & x + y \end{vmatrix} = -16 \Rightarrow -2x(x^2 - 0) = \\ &16 \Rightarrow x^3 = 8 \Rightarrow x = 2 \end{aligned}$$

Q.11 (2)

$$\begin{vmatrix} b_{1} + c_{1} & c_{1} + a_{1} & a_{1} + b_{1} \\ b_{2} + c_{2} & c_{2} + c_{2} & a_{2} + b_{2} \\ b_{3} + c_{3} & c_{3} + a_{3} & a_{3} + b_{3} \end{vmatrix}$$

Taking two common, applying $C_{1} \rightarrow C_{1} + C_{2} + C_{3}$
$$= \begin{vmatrix} 2(a_{1} + b_{1} + c_{1}) & c_{1} + a_{1} & a_{1} + b_{1} \\ 2(a_{2} + b_{2} + c_{2}) & c_{2} + a_{2} & a_{2} + b_{2} \\ 2(a_{3} + b_{3} + c_{3}) & c_{3} + a_{3} & a_{3} + b_{3} \end{vmatrix}$$

Applying $C_{2} \rightarrow C_{2} - C_{1} \& C_{3} \rightarrow C_{3} - C_{1}$
$$= 2 \begin{vmatrix} a_{1} + b_{1} + c_{1} & -b_{1} & -c_{1} \\ a_{2} + b_{2} + c_{2} & -b_{2} & -c_{2} \\ a_{3} + b_{3} + c_{3} & -b_{3} & -c_{3} \end{vmatrix}$$

Applying $C_{1} \rightarrow C_{1} + C_{2} + C_{3}$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Q.12 (3)

$$\Delta = \begin{vmatrix} x & x+y & x+y+z \\ 2x & 5x+2y & 7x+5y+2z \\ 3x & 7x+3y & 9x+7y+3z \end{vmatrix} = -16$$

Applying $R_2 \rightarrow R_2 - 2R_1 \& R_3 \rightarrow R_3 - 3R_1$
$$\Delta = \begin{vmatrix} x & x+y & x+y+z \\ 0 & 3x & 5x+3y \\ 0 & 4x & 6x+4y \end{vmatrix} = -16$$

Applying $R_3 \rightarrow R_3 - R_2$
$$\begin{vmatrix} x & x+y & x+y+z \\ 0 & 3x & 5x+3y \\ 0 & x & x+y \end{vmatrix} = -16$$

Applying $R_2 \rightarrow R_2 - 3R_1$
$$\begin{vmatrix} x & x+y & x+y+z \\ 0 & 0 & 2x \\ 0 & x & x+y \end{vmatrix} = -16 \Rightarrow -2x(x^2 - 0) = -16$$

$$Applying R_2 \rightarrow R_2 - 3R_1$$

Q.13 (2)

$$\begin{array}{ccc} \cos(\theta + \phi) & -\sin(\theta + \phi) & \cos 2\phi \\ \sin \theta & \cos \theta & \sin \phi \\ -\cos \theta & \sin \theta & \cos \phi \end{array}$$

 $= \frac{1}{\sin\phi\cos\phi} \begin{vmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) & \cos 2\phi \\ \sin\theta\sin\phi & \sin\phi\cos\theta & \sin^2\phi \\ -\cos\theta\cos\phi & \sin\theta\cos\phi & \cos^2\phi \end{vmatrix}$

Applying
$$R_1 \rightarrow R_1 + R_2 + R_3$$

$$= \frac{1}{\sin\phi\cos\phi} \begin{vmatrix} 0 & 0 & 2\cos^{2}\phi \\ \sin\theta\sin\phi & \sin\phi\cos\theta & \sin^{2}\phi \\ -\cos\theta\cos\phi & \sin\theta\cos\phi & \cos^{2}\phi \end{vmatrix}$$
$$= \begin{vmatrix} 0 & 0 & 2\cos^{2}\phi \\ \sin\theta & \cos\phi & \sin\theta\cos\phi & \cos^{2}\phi \\ \sin\theta & \cos\phi & \sin\phi \\ -\cos\theta & \sin\theta & \cos\phi \end{vmatrix} = 2\cos^{2}\phi (\sin^{2}\theta + \cos^{2}\theta)$$

 $\cos^2\theta$) = $2\cos^2\phi$

$$\begin{aligned} \mathbf{Q.14} \quad (2) \\ \Delta &= \begin{vmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\theta\sin\phi & \sin\theta\cos\phi & 0 \end{vmatrix}; \\ \Delta &= \sin^2\theta\cos\theta \begin{vmatrix} \cos\phi & \sin\phi & -\sin\theta \\ \cos\phi & \sin\phi & -\tan\theta \\ -\sin\phi & \cos\phi & 0 \end{vmatrix}; \\ Applying \mathbf{R}_1 &\to \mathbf{R}_1 - \mathbf{R}_2 \\ \Delta &= \sin^2\theta\cos\theta \begin{vmatrix} 0 & 0 & \cot\theta + \tan\theta \\ \cos\phi & \sin\phi & -\tan\theta \\ -\sin\phi & \cos\phi & 0 \end{vmatrix} \\ \Delta &= \sin\theta \end{aligned}$$

Expand the determinant using first row and use x - y= A, y - z = B and z - x = C $\implies A + B + C = 0$

Q.16 (1) $\Delta =$

$$\begin{array}{rrr} 1 + a^2 + a^4 & a + ab + a^2b^2 & 1 + ac + a^2c^2 \\ 1 + ab + a^2b^2 & 1 + b^2 + b^4 & 1 + bc + b^2c^2 \\ 1 + ac + a^2c^2 & 1 + bc + b^2c^2 & 1 + c^2 + c^4 \end{array}$$

$$= \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{vmatrix}$$
$$= (a - b)^{2} (b - c)^{2} (c - a)^{2}$$

Q.17 (4)

For non trivial solution
$$\begin{vmatrix} \sin \theta & -\cos \theta & \lambda + 1 \\ \cos \theta & \sin \theta & -\lambda \\ \lambda & \lambda + 1 & \cos \theta \end{vmatrix} = 0$$
; this gives $2 \cos \theta (\lambda^2 + \lambda + 1) = 0$

.

Q.18 (4)

For non trivial solution

$$\begin{vmatrix} 1 & -\cos\theta & \cos 2\theta \\ -\cos\theta & 1 & -\cos\theta \\ \cos 2\theta & -\cos\theta & 1 \end{vmatrix} = 0$$

using $C_1 \rightarrow C_1 - C_3$
$$\begin{vmatrix} 2\sin^2\theta & -\cos\theta & \cos 2\theta \\ 0 & 1 & -\cos\theta \\ -2\sin^2\theta & -\cos\theta & 1 \end{vmatrix} = 0$$

 $\Rightarrow 2 \sin^2 \theta \begin{vmatrix} 1 & -\cos \theta & \cos 2\theta \\ 0 & 1 & -\cos \theta \\ -1 & -\cos \theta & 1 \end{vmatrix} = 0$ or $1[1 - \cos^2 \theta] - 1[\cos^2 \theta - \cos 2\theta]$ $\sin^2 \theta - [\cos^2 \theta - (\cos^2 \theta - \sin^2 \theta)]$ $\sin^2 \theta - \sin^2 \theta = 0$ hence $D = 0 \forall \theta \in \mathbb{R}$ $\Rightarrow (4)$

Q.19 (1)

For non-trivial solution

(α + a)	α	α	
α	$\alpha + b$	α $\alpha + c$	= 0
α	α	$\alpha + c$	Ŭ

Taking α as common from each row

$$\Rightarrow \alpha^{3} \begin{vmatrix} 1 + \frac{a}{\alpha} & 1 & 1 \\ 1 & 1 + \frac{b}{\alpha} & 1 \\ 1 & 1 & 1 + \frac{c}{\alpha} \end{vmatrix} = 0$$

Applying $C_1 \rightarrow C_1 - C_3, C_2 \rightarrow C_2 - C_3$ and expanding $\Rightarrow \alpha^3 \left[\frac{ab}{\alpha^2} + \frac{bc}{\alpha^2} + \frac{ac}{\alpha^2} + \frac{abc}{\alpha^3} \right] = 0$ $\Rightarrow \frac{1}{\alpha} = -\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$

Q.20 (1)

$$\Delta = \begin{vmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda \end{vmatrix}$$

For no solution of system $\Delta = 0$ and at least one of the Δ_x , Δ_y , Δ_z is non zero. for $\Delta = 0$, $\lambda = -2$

Q.21 (2)

$$D = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 3 & -3 \end{vmatrix}$$
 which vanishes
hence for atleast one solution $D_1 = D_2 = D_3 = 0$
$$\therefore \quad D_1 = \begin{vmatrix} a & -2 & 1 \\ b & 1 & -2 \\ c & 3 & -3 \end{vmatrix} = 0 \Rightarrow a - b + c = 0$$
 Ans.

Q.22

(2)

For non zero solution D = 0

$$D = \begin{vmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{vmatrix} = 0$$

$$\begin{split} 1(3bc-4bc)-2a\ (c-b)+a(4c-3b)&=0\\ -bc-2ac+2ab+4ac-3ab&=0\\ -bc+2ac-ab&=0\\ ab+bc&=2ac\\ Divide both side by abc \end{split}$$

$$\frac{1}{c} + \frac{1}{a} = \frac{2}{b}$$

Hence a, b, c are in H.P.

JEE-ADVANCED OBJECTIVE QUESTIONS

Q.1 (

(C) $2 \log_{10} a + \log_{10} (a - 1) = \log_{10} 2a$ $\therefore a^{2} (a - 1) = 2a \qquad a \neq 0$ $\therefore a^{2} - a - 2 = 0 \implies (a - 2) (a + 1) = 0$ $\implies a = 2, -1 \qquad \therefore a = 2$]

$$\begin{bmatrix} a^{2} + 1 & ab & ac \\ ba & b^{2} + 1 & bc \\ ca & cb & c^{2} + 1 \end{bmatrix}$$

$$= \frac{1}{abc} \begin{bmatrix} a(a^{2} + 1) & a^{2}b & a^{2}c \\ b^{2}a & b(b^{2} + 1) & b^{2}c \\ c^{2}a & c^{2}b & c(c^{2} + 1) \end{bmatrix}$$

$$= \frac{abc}{abc} \begin{bmatrix} a^{2} + 1 & a^{2} & a^{2} \\ b^{2} & b^{2} + 1 & b^{2} \\ c^{2} & c^{2} & c^{2} + 1 \end{bmatrix}$$
Applying $R_{1} \rightarrow R_{1} + R_{2} + R_{3}$

$$(a^{2} + b^{2} + c^{2} + 1) \begin{vmatrix} 1 & 1 & 1 \\ b^{2} & b^{2} + 1 & b^{2} \\ c^{2} & c^{2} & c^{2} + 1 \end{vmatrix}$$
Applying $C_{2} \rightarrow C_{2} - C_{1} \& C_{3} \rightarrow C_{3} - C_{1}$

$$(a^{2} + b^{2} + c^{2} + 1) \begin{vmatrix} 1 & 0 & 0 \\ b^{2} & 1 & 0 \\ c^{2} & 0 & 1 \end{vmatrix} = (a^{2} + b^{2} + c^{2} + 1)$$

(A)

$$\begin{vmatrix} a^{3} - x & a^{4} - x & a^{5} - x \\ a^{5} - x & a^{6} - x & a^{7} - x \\ a^{7} - x & a^{8} - x & a^{9} - x \end{vmatrix}$$
Applying $R_{3} \rightarrow R_{3} - R_{2}, R_{2} \rightarrow R_{2} - R_{1}$

$$= \begin{vmatrix} a^{3} - x & a^{4} - x & a^{5} - x \\ a^{5} - a^{3} & a^{6} - a^{4} & a^{7} - a^{5} \\ a^{7} - a^{5} & a^{8} - a^{6} & a^{9} - a^{7} \end{vmatrix} = a^{3}a^{5}$$

$$\begin{vmatrix} a^{3} - x & a^{4} - x & a^{5} - x \\ a^{2} - 1 & a^{3} - a & a^{4} - a^{2} \\ a^{2} - 1 & a^{3} - a & a^{4} - a^{2} \\ a^{2} - 1 & a^{3} - a & a^{4} - a^{2} \end{vmatrix} = 0$$
(C)
(C)

$$\Delta_{1} = \begin{vmatrix} 2a & b & e \\ 2d & e & f \\ 4x & 2y & 2z \end{vmatrix} = 4 \begin{vmatrix} a & b & e \\ d & e & f \\ x & y & z \end{vmatrix};$$

$$\Delta_{2} = \begin{vmatrix} f & 2d & e \\ 2z & 4x & 2y \\ e & 2a & b \end{vmatrix} = 4 \begin{vmatrix} f & d & e \\ z & x & y \\ e & a & b \end{vmatrix}$$
C_{1} \leftrightarrow C_{1} followed by

$$\Delta_{2} = \begin{vmatrix} d & e & f \\ x & y & z \\ a & b & c \end{vmatrix}$$
R_{1} \leftrightarrow R_{2} followed by R_{1} \leftrightarrow R_{3} = \begin{vmatrix} a \\ d \\ x \\ \Rightarrow & \Delta_{1} - \Delta_{2} = 0
(D)
(D)

$$\begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \end{vmatrix} = 0$$

 $\cos x \cos x \sin x$

 $(\sin x + 2\cos x) \begin{vmatrix} 1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x \end{vmatrix} = 0$

 $C_1 \rightarrow C_1 + C_2 + C_3$

 $\begin{array}{c} \mathbf{R}_2 \rightarrow \mathbf{R}_2 - \mathbf{R}_1 \\ \mathbf{R}_3 \rightarrow \mathbf{R}_3 - \mathbf{R}_1 \end{array}$

Q.4

Q.5

Q.6

b e e f y z $(\sin x + 2\cos x)$

$$\begin{vmatrix} 1 & \cos x & \cos x \\ 0 & \sin x - \cos x & 0 \\ 0 & 0 & \sin x - \cos x \end{vmatrix} = 0$$

$$\Rightarrow (\sin x + 2 \cos x) (\sin x - \cos x)^2 = 0$$

Hence $\tan x = -2$ or $\tan x = 1$
Total 200 solutions.
Q.7 (C)
 $C_1 \rightarrow C_1 + C_2 + C_3$
 $f(x)$

$$= \begin{vmatrix} 1 + 2x + x(a^2 + b^2 + c^2) & (1 + b^2)x & (1 + c^2)x \\ 1 + 2x + x(a^2 + b^2 + c^2) & 1 + b^2x & (1 + c^2)x \\ 1 + 2x + x(a^2 + b^2 + c^2) & (1 + b^2)x & 1 + c^2x \end{vmatrix}$$
(as $a^2 + b^2 + c^2 = -2$)

$$\begin{vmatrix} 1 & (1 + b^2)x & (1 + c^2)x \\ 1 & 1 + b^2x & (1 + c^2)x \\ 1 & (1 + b^2)x & 1 + c^2x \end{vmatrix}$$
 $R_2 \rightarrow R_2 - R_1 \& R_3 \rightarrow R_3 - R_1$

$$\begin{vmatrix} 1 & (1 + b^2)x & (1 + c^2)x \\ 0 & 1 - x & 0 \\ 0 & 1 - x & 1 - x \end{vmatrix}$$
 $f(x) = (1 - x)^2 = 1 - 2x + x^2 \Rightarrow (C)]$

Q.8 (B)

$$\begin{vmatrix} a^{3} + 1 & a^{2}b & a^{2}c \\ ab^{2} & b^{3} + 1 & b^{2}c \\ ac^{2} & bc^{2} & c^{3} + 1 \end{vmatrix} = 11$$

$$\Rightarrow \frac{1}{a \cdot b \cdot c} \begin{vmatrix} a(a^{3}+1) & a^{3}b & a^{3}c \\ ab^{3} & b(b^{3}+1) & b^{3}c \\ ac^{3} & bc^{3} & c(c^{3}+1) \end{vmatrix} = 11$$

$$\Rightarrow \frac{a.b.c}{a.b.c} \begin{vmatrix} a^{3}+1 & a^{3} & a^{3} \\ b^{3} & b^{3}+1 & b^{3} \\ c^{3} & c^{3} & c^{3}+1 \end{vmatrix} = 11$$

Applying $c_1 \rightarrow c_1 - c_2$, $c_2 \rightarrow c_2 - c_3$, we get

$$\Rightarrow \begin{vmatrix} 1 & 0 & a^{3} \\ -1 & 1 & b^{3} \\ 0 & -1 & c^{3} + 1 \end{vmatrix} = 11$$

 $\Rightarrow a^3 + b^3 + c^3 + 1 = 11 \Rightarrow a^3 + b^3 + c^3 = 10$ Only possibles are (1, 1, 2) (1, 2, 1), (2, 1, 1) Number of triplets = 3. (A) [Hint : Use $C_2 \rightarrow C_2 - C_1 - 2 C_3$ then $C_1 \rightarrow C_1$ + C_2 take $a^2 + b^2 + c^2$ common from first column]

+C₂take $a^2 + b^2 + c^2$ common from first column Q.10 (A)

Q.9

$$(i) \begin{vmatrix} a & b & ax+b \\ b & c & bx+c \\ ax+b & bx+c & c \end{vmatrix} = 0$$

$$Applying C_3 \rightarrow C_3 - C_2$$

$$\begin{vmatrix} a & b & ax \\ b & c & bx \\ ax+b & bx+c & -bx \end{vmatrix} = 0 \Rightarrow$$

$$x \begin{vmatrix} a & b & a \\ b & c & b \\ ax+b & bx+c & -b \end{vmatrix} = 0$$

$$Applying C_1 \rightarrow C_1 - C_3$$

$$x \begin{vmatrix} 0 & b & a \\ 0 & c & b \\ ax+2b & bx+c & -b \end{vmatrix} \Rightarrow x(ax+2b)(b^2 - ac) = 0$$

$$\therefore \text{ Non zero root of equation } x = -\frac{2b}{a}$$

$$(ii) \begin{vmatrix} 15 - 2x & 11 & 10 \\ 11 - 3x & 17 & 16 \\ 7 - x & 14 & 13 \end{vmatrix}$$

$$Applying \begin{vmatrix} 15 - 2x & 1 & 10 \\ 11 - 3x & 17 & 16 \\ 7 - x & 14 & 13 \end{vmatrix} = 0$$

$$Applying R_1 \rightarrow R_1 - R_3 \& R_2 \rightarrow R_2 - R_3$$

$$\begin{vmatrix} 8 - x & 0 & -3 \\ 4 - 2x & 0 & 3 \\ 7 - x & 1 & 13 \end{vmatrix} = 0 \Rightarrow -1[(8 - x)3 + 3(4 - 2x)] = 0 \Rightarrow 9x = 36 \Rightarrow x = 4$$

Q.11 (A)

For non-trivial solution $\begin{vmatrix} (\alpha + \mathbf{a}) & \alpha & \alpha \\ \alpha & \alpha + \mathbf{b} & \alpha \\ \alpha & \alpha & \alpha + \mathbf{c} \end{vmatrix} = 0$

Taking α as common from each row

Matrices and Determinants

$$\Rightarrow \alpha^{3} \begin{vmatrix} 1 + \frac{a}{\alpha} & 1 & 1 \\ 1 & 1 + \frac{b}{\alpha} & 1 \\ 1 & 1 & 1 + \frac{c}{\alpha} \end{vmatrix} = 0$$

Applying $C_1 \rightarrow C_1 - C_3$, $C_2 \rightarrow C_2 - C_3$ and expanding $\Rightarrow \alpha^{3} \left[\frac{ab}{\alpha^{2}} + \frac{bc}{\alpha^{2}} + \frac{ac}{\alpha^{2}} + \frac{abc}{\alpha^{3}} \right] = 0 \qquad \Rightarrow \frac{1}{\alpha} = \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

Q.12 (A)

 $\Delta = \begin{vmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda \end{vmatrix}$

For no solution of system $\Delta = 0$ and at least one of the Δ_x , Δ_y , Δ_z is non zero. for $\Delta = 0$, $\lambda = -2$

Q.13 (B)

Here $\Delta = \begin{vmatrix} 1 & 1 & -1 \\ 1 & 2 & -3 \\ 2 & 5 & -\lambda \end{vmatrix}$ system has unique solution if

 $\Delta \neq 0$ and at least one of Δ_x , Δ_y , Δ_z is non-zero. $\Delta = 1(-2\lambda + 15) - 1(-\lambda + 6) - 1(5 - 4) \neq 0 \Longrightarrow - 2\lambda$ $+15 + \lambda - 6 - 1 \neq 0 \Longrightarrow - \lambda + 8 \neq 0 \Longrightarrow \lambda \neq 8$

Q.14 (D)

i.

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 1 & p & 2 \\ 1 & 4 & \mu \end{vmatrix}; \qquad \Delta_{x} = \begin{vmatrix} 4 & 2 & 3 \\ 3 & p & 2 \\ 3 & 4 & \mu \end{vmatrix};$$
$$\Delta_{y} = \begin{vmatrix} 1 & 4 & 3 \\ 1 & 3 & 2 \\ 1 & 3 & \mu \end{vmatrix}; \qquad \Delta_{z} = \begin{vmatrix} 1 & 2 & 4 \\ 1 & p & 3 \\ 1 & 4 & 3 \end{vmatrix}$$

For infinite no. of solution $\Delta = \Delta_x = \Delta_y = \Delta_z = 0 \Rightarrow \mu$ Q.18 = 2, p = 4

Q.15 (B)

For non-trivial solution
$$\begin{vmatrix} \lambda & \sin \alpha & \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ -1 & \sin \alpha & -\cos \alpha \end{vmatrix} = 0$$

$$\Rightarrow \lambda = \sin 2\alpha + \cos 2\alpha \Rightarrow -\sqrt{2} \le \sin 2\alpha + \cos 2\alpha$$
$$\le \sqrt{2} \Rightarrow -\sqrt{2} \le \lambda \le \sqrt{2}.$$

Q.16 (D)

> $(a-1) x + 0y + z = \alpha$(1)

$$\begin{aligned} x + (b-1) y + 0z &= \beta & \dots \dots (2) \\ 0x + y + (c-1) z &= \gamma & \dots \dots (3) \\ For no unique solution D &= 0 \end{aligned}$$

$$\begin{vmatrix} (a-1) & 0 & 1 \\ 1 & (b-1) & 0 \\ 0 & 1 & (c-1) \end{vmatrix} = 0$$

(a-1) (b-1) (c-1) + 1 = 0
 \therefore a = 2; b = 2; c = 0
Hence, $|a+b+c| = 4$.

Q.17 (C)

To have a non-trivial solution, we must have

$$\begin{vmatrix} k & k+1 & k-1 \\ k+1 & k & k+2 \\ k-1 & k+2 & k \end{vmatrix} = 0 \Rightarrow 2k+1 = 0$$
$$\Rightarrow k = \frac{-1}{2}.$$

Aliter : Applying $R_1 \rightarrow R_1 - R_2$ and $R_2 \rightarrow R_2 - R_3$, we get

$$\begin{vmatrix} -1 & 1 & -3 \\ 2 & -2 & 2 \\ k-1 & k+2 & k \end{vmatrix} = 0$$

Applying

$$C_1 \rightarrow C_1 - C_2$$
 and $C_2 \rightarrow C_2 - C_3$

we get,
$$\begin{vmatrix} -2 & 4 & -3 \\ 4 & -4 & 2 \\ -3 & 2 & k \end{vmatrix} = 0$$

Expanding along R_1 , we get $-2(-4k-4) - 4(4k+6) - 3(8-12) = 0 \implies$ 8k + 8 - 16k - 24 - 24 + 36 = 0 \Rightarrow -4-8k=0 \Rightarrow 8k=-4 $k=\frac{-1}{2}$. *.*.. (A)

$$\Delta = \begin{vmatrix} p+a & b & c \\ a & q+b & c \\ a & b & r+c \end{vmatrix} = 0$$

$$R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1$$

and expansion

$$pqc + \left(q(p+a) + bp\right)r = 0$$

$$\frac{c}{r} + 1 + \frac{a}{p} + \frac{b}{q} = 0.$$

JEE-ADVANCED MCQ/COMPREHENSION/COLUMN MATCHING Q.1 (AC) $f(x) = \begin{vmatrix} a^{-x} & e^{x/na} & x^2 \\ a^{-3x} & e^{3x/na} & x^4 \\ a^{-5x} & e^{5x/na} & 1 \end{vmatrix} = \begin{vmatrix} a^{-x} & a^x & x^2 \\ a^{-3x} & a^{3x} & x^4 \\ a^{-5x} & a^{5x} & 1 \end{vmatrix}$ $f(-x) = \begin{vmatrix} a^{-x} & e^{-x/na} & x^2 \\ a^{3x} & e^{-3n/na} & x^4 \\ a^{5x} & e^{-5x/na} & 1 \end{vmatrix} = \begin{vmatrix} a^x & a^{-x} & x^2 \\ a^{3x} & a^{-3x} & x^4 \\ a^{5x} & a^{-5x} & 1 \end{vmatrix}$ = -f(x) $\therefore f(x) + f(-x) = 0$ O.2 (ABD)

$$\begin{split} &\left(\Delta = \begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix}, \ \Delta = (1 + x + x^2) \begin{vmatrix} 1 & x & x^2 \\ 1 & 1 & x \\ 1 & x^2 & 1 \end{vmatrix} \\ &= (1 + x + x^2) \left\{ 1(1 - x^3) - x(1 - x) + x^2(x^2 - 1) \right\} \\ &= (1 + x + x^2) \left\{ 1 - x^3 - x + x^2 + x^4 - x^2 \right\} = (1 + x + x^2) \left\{ x^4 - x^3 - x + 1 \right\} \\ &\Delta = (1 - x^3)^2; \qquad \Delta' = 2(1 - x^3) (-3 x^2); \\ &\Delta'(1) = 0 \end{split}$$

Q.3 (AC) p = a; q = a + d; r = a + 2d; $s = a + 3d \implies f$ $(x) = -2d^2$ Also use $R_1 \rightarrow R_1 - R_2$ and $R_2 \rightarrow R_2 - R_3$

Q.4 (AB)

$$\begin{aligned} \left| \Delta = \begin{vmatrix} x & 2y - z & -z \\ y & 2x - z & -z \\ y & 2y - z & 2x - 2y - z \end{vmatrix} \\ Applying R_2 &\to R_2 - R_1 \& R_3 \to R_3 - R_1 \\ &= \begin{vmatrix} x & 2y - z & -z \\ y - x & 2(x - y) & 0 \\ y - x & 0 & 2(x - y) \end{vmatrix} = (x - y)^2 \\ \begin{vmatrix} x & 2y - z & -z \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{vmatrix} = 4(x - y)^2 (x + y - z) \\ So \Delta \text{ is divisible by } (x - y) \& (x - y)^2. \end{aligned}$$

Q.5 (CD) We have $D_1 = (a + b + c)(c - a)^2$

and $D_2 = (a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)$

Q.6 (ABCD)

$$\begin{vmatrix} a_{1} - b_{1} & a_{1} - b_{2} & a_{1} - b_{3} \\ a_{2} - b_{1} & a_{2} - b_{2} & a_{2} - b_{3} \\ a_{3} - b_{1} & a_{3} - b_{2} & a_{3} - b_{3} \end{vmatrix}$$

$$R_{2} \rightarrow R_{2} - R_{1} \& R_{3} \rightarrow R_{3} - R_{2}$$

$$\begin{vmatrix} a_{1} - b_{1} & a_{1} - b_{2} & a_{1} \\ a_{2} - a_{1} & a_{2} - a_{1} & a_{2} - a_{1} \\ a_{3} - a_{2} & a_{3} - a_{2} & a_{3} - a_{2} \end{vmatrix} = \begin{bmatrix} a_{1} - b_{1} & a_{1} - b_{2} & a_{1} \\ a_{3} - a_{2} & a_{3} - a_{2} & a_{3} - a_{2} \end{vmatrix}$$

$$\begin{vmatrix} a_{1} - b_{1} & a_{1} - b_{2} & a_{1} \\ a_{3} - a_{2} & a_{3} - a_{2} & a_{3} - a_{2} \end{vmatrix}$$

$$= 0$$

 $\Delta = 0$ **Q.7** (ABC)

$$(\Delta = \begin{vmatrix} -x & a & b \\ b & -x & a \\ a & b & -x \end{vmatrix} = (a+b-x) \begin{vmatrix} 1 & a & b \\ 1 & -x & a \\ 1 & b & -x \end{vmatrix}$$

Applying $\mathbf{R}_2 \rightarrow \mathbf{R}_2 - \mathbf{R}_1$, $\mathbf{R}_3 \rightarrow \mathbf{R}_3 - \mathbf{R}_1$

$$= (a + b - x) \begin{vmatrix} 1 & a & b \\ 0 & -(x + a) & a - b \\ 0 & b - a & -(x + b) \end{vmatrix} = (a + b - x)$$

$${(x + a) (x + b) + (a - b)^2}$$

(BD)

$$(\Delta = \begin{vmatrix} b & c & b\alpha + c \\ c & d & c\alpha + d \\ b\alpha + c & c\alpha + d & a\alpha^3 - c\alpha \end{vmatrix} = 0$$

Applying $C_3 \rightarrow C_3 - (C_1 \alpha + C_2)$

$$\Delta = \begin{vmatrix} \mathbf{b} & \mathbf{c} & \mathbf{0} \\ \mathbf{c} & \mathbf{d} & \mathbf{0} \\ \mathbf{b}\alpha + \mathbf{c} & \mathbf{c}\alpha + \mathbf{d} & \mathbf{a}\alpha^3 - \mathbf{b}\alpha^2 - \mathbf{3}\mathbf{c}\alpha - \mathbf{d} \end{vmatrix} = 0$$

 $(a\alpha^3 - b\alpha^2 - 3c\alpha - d) (bd - c^2) = 0$ $\therefore \text{ Either b, c, d in G.P. or } \alpha \text{ is root of } ax^3 - bx^2 - 3cx - d = 0$

Q.9 (AC)

$$(\Delta = \begin{vmatrix} a^{2}(1+x) & ab & ac \\ ab & b^{2}(1+x) & bc \\ ac & bc & c^{2}(1+x) \end{vmatrix} = a^{2}b^{2}c^{2}$$
$$\begin{vmatrix} (1+x) & 1 & 1 \\ 1 & (1+x) & 1 \\ 1 & 1 & (1+x) \end{vmatrix}$$
Applying $C_{1} \rightarrow C_{1} + C_{2} + C_{3}$

$$\begin{aligned} a^{2}b^{2}c^{2}(3+x) & \begin{vmatrix} 1 & 1 & 1 \\ 1 & (1+x) & 1 \\ 1 & 1 & (1+x) \end{vmatrix} \\ Applying R_{1} \rightarrow R_{1} - R_{2}, R_{2} \rightarrow R_{2} - R_{3} \\ & = \begin{vmatrix} 0 & -x & 0 \\ 0 & x & -x \\ 1 & 1 & 1+x \end{vmatrix} a^{2}b^{2}c^{2}(3+x) = a^{2}b^{2}c^{2}(3+x) x^{2} \end{aligned}$$

Which is divisible by x²

Q.10 (ABD)

Q.11

$$f(x) = \begin{vmatrix} 1/x & \log x & x^{n} \\ 1 & -1/n & (-1)^{n} \\ 1 & a & a^{2} \end{vmatrix};$$

$$f'(x) = \begin{vmatrix} -1/x^{2} & 1/x & nx^{n-1} \\ 1 & -1/n & (-1)^{n} \\ 1 & a & a^{2} \end{vmatrix}$$

$$f''(x) = \begin{vmatrix} 2/x^{3} & -1/x^{2} & n(n-1)x^{n-2} \\ 1 & -1/n & (-1)^{n} \\ 1 & a & a^{2} \end{vmatrix};$$

$$f''(x) = \begin{vmatrix} (-1)^{n} \frac{n!}{x^{n+1}} & \frac{(-1)^{n-1}(n-1)!}{x^{n}} & n! \\ 1 & -1/n & (-1)^{n} \\ 1 & a & a^{2} \end{vmatrix}$$

$$f^{n}(1) = \begin{vmatrix} (-1)^{n} n! & (-1)^{n-1}(n-1)! & n! \\ 1 & -1/n & (-1)^{n} \\ 1 & a & a^{2} \end{vmatrix} = (-1)^{n} n^{n}$$

$$\begin{vmatrix} 1 & -1/n & (-1)^{n} \\ 1 & a & a^{2} \end{vmatrix} = (-1)^{n} n^{n}$$

$$\begin{vmatrix} 1 & -1/n & (-1)^{n} \\ 1 & a & a^{2} \end{vmatrix} = 0$$
and $y = a (x - f^{n}(1))$

$$y = ax$$
(BCD)

$$f(x) = \begin{vmatrix} 2\sin x & \sin^2 x & 0 \\ 1 & 2\sin x & \sin^2 x \\ 0 & 1 & 2\sin x \end{vmatrix} = 2 \sin x (4 \sin^2 x)$$
$$-\sin^2 x (2\sin x) = 6\sin^3 x - 2\sin^3 x$$
$$f(x) = 4 \sin^3 x$$

 \Rightarrow f'(x) = 12sin²x cos x

(B) $f'(\pi/2) = 12 \sin^2(\pi/2) \cos(\pi/2) = 0$

(C)
$$f(-x) = -f(x)$$
 odd function

$$\therefore \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx = 0$$
(D) at $x = 0, y = 0$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(0,0)} = 0 \text{ tangent at } (0, 0)$$

$$y - 0 = \left(\frac{dy}{dx}\right)_{(0,0)} (x - 0) \implies y = 0$$

Q.12 (ABCD)

 $\langle - \cdot \rangle$ ~

$$f(x) = \begin{vmatrix} 2 \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x \end{vmatrix};$$

 $f(x) = 8\cos^3 x - 2\cos x - 2\cos x = 2\cos 3x + 2\cos x$ $f'(x) = -6\sin 3x - 2\sin x = 0$ \therefore f'(0) = 0 (D) ; $f''(x) = -18\cos 3x - 2\cos x < 0$, at x = 0 $\therefore f(0)_{max} = 2 + 2 = 4;$ $\int_0^{\pi} f(x) dx = \int_0^{\pi} (2\cos 3x + 2\cos x) \, dx = 0$

Q.13 (ABCD) For nth order determinant $\Delta = |C_{ij}| = D^{n-1}$ (A) For 3rd order determinant $\Delta = D^{3-1} = D^2 \dots (1)$ (B) From (1) if D = 0 then $\Delta = 0$ (C) $\Delta = 27 = 3^3$ $\Delta = (3^3)^2 = 3^6$ (a perfect cube)

Q.14 (ABD) (Det $(-A) = (-1)^n$ det (A) where n is order of square matrix.

! Q.15 (A,D)

$$\begin{vmatrix} 1+\beta^2 & \beta & \beta^2 \\ 3 & \alpha-2 & 3 \\ \alpha & 1 & \alpha \end{vmatrix} = 0 = \begin{vmatrix} 1 & \beta & \beta^2 \\ 0 & \alpha-2 & 3 \\ 0 & 1 & \alpha \end{vmatrix}$$
$$\Rightarrow \alpha^2 - 2\alpha - 3 = 0 \Rightarrow \alpha = 3 \text{ or } -1$$
$$|||^{1y} \beta = 3 \text{ or } -1$$
But $\alpha > \beta \Rightarrow \alpha = 3 \text{ and } \beta = -1.$

Paragraph for question nos. 16 & 17

Q.17 (D)
16 to 17
(i)
$$c_1 \rightarrow c_1 - c_2$$
, $c_2 \rightarrow c_2 - c_1$, $c_3 \rightarrow c_3 - 2c_1$
 $\begin{vmatrix} 2 & 1 & 2 \\ 1+\alpha & \alpha & \beta \\ 4-\beta & 3-\beta & \alpha+1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 2 \\ 1 & \alpha & \beta \\ 1 & 3-\beta & \alpha+1 \end{vmatrix}$

$$= \begin{vmatrix} 1 & 0 & 0 \\ 1 & \alpha - 1 & \beta - 2 \\ 1 & 2 - \beta & \alpha - 1 \end{vmatrix}$$

= $(\alpha - 1)^2 + (\beta - 2)^2 = 0 \implies \alpha = 1, \ \beta = 2, \ \gamma = 4$
 \therefore the cubic equation is
 $x^3 - 7x^2 + 14x - 8 = 0$
(ii) $S = \sum_{r=1}^{100} \left(\left(\frac{\alpha}{\beta} \right)^r + \left(\frac{a}{b} \right)^r \right) = \sum_{r=1}^{100} \left(\frac{1}{2} \right)^r + \left(\frac{-1}{2} \right)^r$
 $= \sum_{n=1}^{50} 2 \left(\frac{1}{2} \right)^{2n} = 2 \cdot \frac{\frac{1}{4} \cdot \left(1 - \left(\frac{1}{4} \right)^{50} \right)}{\left(1 - \frac{1}{4} \right)}$

$$=\frac{2}{3}\left(1-\frac{1}{2^{100}}\right)$$
 Ans.

Comprehension # 2 (Q. No. 18 & 20)

Q.18 (A)

Q.19 (D)

Q.20 (A)

$$(_{A\theta} (\alpha, \beta, \gamma) = \begin{vmatrix} \cos(\alpha + \theta) & \sin(\alpha + \theta) & 1 \\ \cos(\beta + \theta) & \sin(\beta + \theta) & 1 \\ \cos(\gamma + \theta) & \sin(\gamma + \theta) & 1 \end{vmatrix}$$

 $\begin{array}{l} A_{\theta}\left(\alpha,\,\beta,\,\gamma\right) \Rightarrow \;\; \sin\left(\alpha-\beta\right)\sin\left(\beta-\gamma\right)\sin\left(\gamma-\alpha\right)=k\\ \Rightarrow \;\; \text{which is independent of } \theta \end{array}$

18 If
$$a = A_{\pi/2} (\alpha, \beta, \gamma)$$
 & $b = A_{\pi/3} (\alpha, \beta, \gamma)$
so $a = b$ (Independent of θ)

19
$$A_{\theta}^{2} + A_{\phi}^{2} - 2(A_{\theta+\phi})^{2} = k^{2} + k^{2} - 2k^{2} = 0$$

20 If α , β , γ are fixed then $y = A_{x}(\alpha, \beta, \gamma) = \text{constant}$
which is a straight line parallel to x-axis.

Q.21 (A)
$$\rightarrow$$
 Q; (B) \rightarrow R; (C) \rightarrow R; (D) \rightarrow P

$$p(\theta) = \begin{vmatrix} -\sqrt{2} & \sin \theta & \cos \theta \\ 1 & \cos \theta & \sin \theta \\ -1 & \sin \theta & -\cos \theta \end{vmatrix} = \sqrt{2} + \sin 2\theta + \cos 2\theta \Rightarrow \sqrt{2} + \left[-\sqrt{2}, \sqrt{2}\right] = \left[0, 2\sqrt{2}\right]$$

$$q(\theta) = \sqrt{2} \begin{vmatrix} \sin 2\theta & 1 & 1 \\ \cos 2\theta & 2 & 3 \\ \cos 2\theta & 3 & 5 \end{vmatrix} = \sqrt{2} (\sin 2\theta - \cos 2\theta)$$
$$\Rightarrow \sqrt{2} \left[-\sqrt{2}, \sqrt{2} \right] = \left[-2, 2 \right]$$
$$r(\theta) = \begin{vmatrix} \cos \theta & \sin \theta & \cos \theta \\ -\sin \theta & \cos \theta & \sin \theta \\ -\cos \theta & -\sin \theta & \cos \theta \end{vmatrix} = 2 \cos \theta \Rightarrow \left[-2, 2 \right]$$
$$and \ s(\theta) = \begin{vmatrix} \sec^2 \theta & 1 & 1 \\ \cos^2 \theta & \cos^2 \theta & \csc^2 \theta \\ 1 & \cos^2 \theta & \cot^2 \theta \end{vmatrix} = (\sin^2 \theta - 1)^2$$
$$\Rightarrow \ [0, 1]$$
$$(A) \rightarrow (s); \ (B) \rightarrow (p); \ (C) \rightarrow (p); \ (D) \rightarrow (p)$$
$$(A) \ \begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 0$$

Q.22

$$\Rightarrow [1 + 4x + 32 + 5x + 23 + 6x + 5] \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} = 0$$

$$\Rightarrow [4 + 4x - 5x + 4 - 6x + 8] \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} = 0$$

$$\Rightarrow 4 + 4x + 10x + 8 + 18x + 24 = 0$$

$$\Rightarrow 32x + 36 = 0$$

$$\Rightarrow x = -9/8$$

(B) $\mu^2 = 49$ $\Rightarrow \mu^2 = \pm 7$
(C) $(A - \lambda I) = 0$ $\Rightarrow \lambda^2 - 4\lambda + 5 = 0$
 $\therefore A^2 - 4A + 5I = 0$
(D) Let $a = b = c = 1$ $\Rightarrow \begin{vmatrix} 4 & 1 & 1\\ 1 & 4 & 1\\ 1 & 1 & 4 \end{vmatrix} = k.27$
 $54 = 27 k$ $\Rightarrow k = 2$
Alter : $\begin{vmatrix} (b + c)^2 & a^2 & a^2\\ b^2 & (c + a)^2 & b^2\\ c^2 & c^2 & (a + b)^2 \end{vmatrix}$
Applying $C_1 \rightarrow C_2 - C_3, C_2 \rightarrow C_2 - C_3$
 $(a + b + c)^2 \begin{vmatrix} b + c - a & 0 & a^2\\ 0 & c + a - b & b^2\\ c - b - a & c - a - b & (a + b)^2 \end{vmatrix}$

Applying
$$R_3 \rightarrow R_3 - (R_1 + R_2)$$

 $(a + b + c)^2 \begin{vmatrix} b + c - a & 0 & a^2 \\ 0 & c + a - b & b^2 \\ -2b & -2a & 2ab \end{vmatrix}$
 $= \frac{(a + b + c)^2}{ab} \begin{vmatrix} a(b + c - a) & 0 & a^2 \\ 0 & b(c + a - b) & b^2 \\ -2ab & -2ab & 2ab \end{vmatrix}$
 $2ab (a + b + c)^2 \begin{vmatrix} (b + c - a) & 0 & a \\ 0 & (c + a - b) & b \\ -1 & -1 & 1 \end{vmatrix} = 2abc$ Q.3
 $(a + b + c)^3$

Q.23 (A) \rightarrow P, Q, T; (B) \rightarrow S; (C) \rightarrow P, R; (D) \rightarrow R Here 24 matrices are possible.

Values of determinants corresponding to these matrices are as follows :

$$\begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} = 2 (4 \text{ matrices}), \begin{vmatrix} 1 & 0 \\ 2 & 4 \end{vmatrix} = 4 (4 \text{ matrices}), \begin{vmatrix} 2 & 0 \\ 1 & 4 \end{vmatrix} = 8 (4 \text{ matrices})$$

And 12 more matrices are there, values of whose determinants are -2, -4, -8.

- (A) Possible non-negative values of det. (A) are 2, 4, 8.
- (B) Sum of these 24 determinants is 0.
- (C) Mod. (det(A)) is least $\therefore |A| = \pm 2$

$$\Rightarrow | \operatorname{adj} (\operatorname{adj} (\operatorname{adj} (A)) | = |A|^{(n-1)^3} = \pm 2$$

(D) Least value of det.(A) is -8

Now,
$$|4A^{-1}| = 16 \frac{1}{|A|} = \frac{16}{-8} = -2$$

NUMERICAL VALUE BASED

Q.1 [34] Put x = -1

$$A - B + C - D + E = \begin{vmatrix} -2 & -2 & -4 \\ 0 & 3 & -4 \\ 2 & 3 & -3 \end{vmatrix}$$

= -2(-9+12) + 2(8+12) = -6 + 40 = 34.

Q.2

[0]

Let A is the first term and D is the common difference of corresponding A.P. then

$$\frac{1}{a} = A + (P - 1)D;$$
 $\frac{1}{b} = A + (q - 1)D;$

$$\frac{1}{c} = A + (r - 1)D$$
Let $\Delta = \begin{vmatrix} bc & ca & ab \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} = abc \begin{vmatrix} 1/a & 1/b & 1/c \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$
Applying $R_1 \rightarrow R_1 - D(R_2) - (A - D)R_3$

$$\Delta = abc \begin{vmatrix} 0 & 0 & 0 \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} = 0$$
[9]
$$R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1$$

$$f(x) = -(a_2 - x)(a_3 - x) = -x^2 + (a_2 + a_3)x - a_2a_3$$

$$|a_2 - a_3| = \frac{\sqrt{D}}{|a|} = 6 \Rightarrow \sqrt{D} = 6$$
Max. $= \frac{-D}{4a} = \frac{36}{4} = 9$.]
[13]

Put
$$\lambda = 0$$
, we get $E = \begin{vmatrix} 0 & -1 & 3 \\ 1 & 2 & -3 \\ -3 & 4 & 0 \end{vmatrix} = 21$

and

Q.4

$$A + \frac{B}{\lambda} + \frac{C}{\lambda^{2}} + \frac{D}{\lambda^{3}} + \frac{E}{\lambda^{4}} = \begin{vmatrix} 1 + \frac{3}{\lambda} & 1 - \frac{1}{\lambda} & 1 + \frac{3}{\lambda} \\ 1 + \frac{1}{\lambda^{2}} & 5 + \frac{2}{\lambda} & 1 - \frac{3}{\lambda} \\ 1 - \frac{3}{\lambda^{2}} & 1 + \frac{4}{\lambda} & 3 \end{vmatrix}$$

Take
$$\lambda \to \infty$$
, we get $A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 3 \end{vmatrix} = 8$

$$\therefore$$
 (E – A) = 21 – 8 = 13

Q.5 [50]

Sol.
$$\mathbf{D} = \begin{vmatrix} a_1 & a_2 & a_3 \\ 5 & 4 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$$

 $\Rightarrow \frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{5}, \frac{1}{4}, \dots, \frac{1}{a_9} \text{ are in A.P.}$

$$d = \frac{1}{4} - \frac{1}{5} = \frac{1}{20} \implies \frac{1}{5} = \frac{1}{a} + \frac{3}{20}$$
$$\Rightarrow \frac{1}{a_1} = \frac{1}{20} \therefore \frac{1}{a_n} = \frac{1}{a_1} + \frac{(n-1)}{20} = \frac{n}{20}$$
$$\Rightarrow a_n = \frac{20}{n}$$

Hence,
$$\mathbf{D} = \begin{vmatrix} 20 & \frac{20}{2} & \frac{20}{3} \\ \frac{20}{4} & \frac{20}{5} & \frac{20}{6} \\ \frac{20}{7} & \frac{20}{8} & \frac{20}{9} \end{vmatrix} = \frac{(20)^3}{4 \times 7} \begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 1 & \frac{4}{5} & \frac{2}{3} \\ 1 & \frac{7}{8} & \frac{7}{9} \end{vmatrix}$$

$$\mathbf{R}_1 \rightarrow \mathbf{R}_1 - \mathbf{R}_2 \text{ and } \mathbf{R}_2 \rightarrow \mathbf{R}_2 - \mathbf{R}_3$$

$$= \frac{(20)^3}{4 \times 7} \begin{vmatrix} 0 & \frac{-3}{10} & \frac{-1}{3} \\ 0 & \frac{-3}{40} & \frac{-1}{9} \\ 1 & \frac{7}{8} & \frac{7}{9} \\ 21D = 50 \end{vmatrix} = \frac{50}{21}$$

$$\begin{vmatrix} -bc & b^{2} + bc & c^{2} + bc \\ a^{2} + ac & -ac & c^{2} + ac \\ a^{2} + ab & b^{2} + ab & -ab \end{vmatrix}$$
$$\Rightarrow \frac{1}{abc} \begin{vmatrix} -abc & ab^{2} + abc & ac^{2} + abc \\ a^{2}b + abc & -abc & bc^{2} + abc \\ a^{2}c + abc & b^{2}c + abc & -abc \end{vmatrix}$$
$$\Rightarrow \frac{abc}{abc} \begin{vmatrix} -bc & ab + ac & ac + ab \\ ab + bc & -ac & bc + ab \\ ab + bc & -ac & bc + ab \\ ac + bc & bc + ac & -ab \end{vmatrix}$$
Applying $R_{1} \rightarrow R_{1} + R_{2} + R_{3}$
$$(ab + bc + ca) \begin{vmatrix} 1 & 1 & 1 \\ ab + bc & -ac & bc + ab \\ ac + bc & bc + ac & -ab \end{vmatrix}$$
Applying $C_{2} \rightarrow C_{2} - C_{1}, C_{3} \rightarrow C_{3} - C_{1}$
$$\Rightarrow (ab + bc + ca)$$

$$\begin{vmatrix} 1 & 0 & 0\\ ab+bc & -(ab+bc+ac) & 0\\ ac+bc & 0 & -(ab+bc+ca) \end{vmatrix}$$

= $(ab+bc+ca)^3$
As per Question
 $(ab+bc+ca)^3 = 4^3$
 $(\sqrt{(ab+bc+ac)})^6 = 2^6$
 $\sqrt{(ab+bc+ac)} = 2$

Q.7 [250]

Given
$$f(x) = \begin{vmatrix} 5 + \sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 5 + \cos^2 x & 4\sin 2x \\ (\sin^2 x) & (\cos^2 x) & 5 + 4\sin 2x \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 - R_2$ and $R_2 \rightarrow R_2 - R_3$

$$f(x) = \begin{vmatrix} 5 & -5 & 0 \\ 0 & 5 & -5 \\ \sin^2 x & (\cos^2 x) & 5 + 4\sin 2x \end{vmatrix} = 25$$

$$\begin{array}{cccc} 1 & -1 & 0 \\ 0 & 1 & -1 \\ \sin^2 x & \cos^2 x & 5 + 4\sin 2x \end{array}$$

$$\label{eq:fx} \begin{split} f(x) &= 150 + 100 \, \sin \, 2x \\ \text{Thus maximum value of } f(x) &= 250. \ \text{Ans} \end{split}$$

Q.8

[2] By operating $R_1 \rightarrow R_1 - R_2$ and $R_2 \rightarrow R_2 - R_3$

$$0 = \begin{vmatrix} p-a & b-q & 0 \\ 0 & q-b & c-r \\ a & b & r \end{vmatrix}$$

$$0 = (p-a) \left\{ r(q-b) - b(c-r) \right\} + a(b-q)(c-r)$$

$$0 = (p-a)(rq-rb) + a(b-q)(c-r) + b(p-a)(r-c)$$

$$0 = \frac{r}{r-c} + \frac{b}{q-b} + \frac{a}{p-a}$$

Dividing by (p-a)(r-c)(q-b)

$$\Rightarrow \frac{r}{r-c} + \left(\frac{b}{q-b} + 1\right) + \left(\frac{a}{p-a} + 1\right) = 2$$

Therefore $\frac{r}{r-c} + \frac{q}{q-b} + \frac{p}{p-a} = 2$

Q.9 [0] $D_1 + D_2 = 0$

Matrices and Determinants

$$\begin{vmatrix} x & a & b \\ -1 & 0 & x \\ x & 2 & 1 \end{vmatrix} - \begin{vmatrix} cx^2 & 2a & -b \\ -1 & 0 & x \\ x & 2 & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} x - cx^2 & -a & 2b \\ -1 & 0 & x \\ x & 2 & 1 \end{vmatrix} = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) (-2x) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + a(-1 - x^2) + 2b(-2) = 0$$

$$(x - cx^2) + a(-1 - x^2) + a(-1 - x^2)$$

 $c = 0, a + 2 = 0 \implies a = -2, a + 4b = 0 \implies b = \frac{1}{2}$ $\therefore a + 4b + c = 0.$

Q.10 [12]

Each term is zero independently.

$$\Rightarrow a = \frac{\pi}{4}, b = 1, c = 0$$

$$\therefore \text{ Required determinant} = \begin{vmatrix} 0 & 1/2 & 1 \\ 3 & 1 & 1 \\ 0 & 5 & 2 \end{vmatrix} = 12$$

KVPY

PREVIOUS YEAR'S

 $\begin{array}{lll} \textbf{Q.1} & (B) \\ & A^k = I, \, B^\ell = 0 \; (\det \; (B) = 0) \\ & \Rightarrow \det \; (AB) = 0 \end{array}$

Q.2 (D)

Determinant =

Determinant of remainder =

$$\begin{vmatrix} (1)^{2014} & 0 & 1 \\ 2^{2017} & 2^{2018} & (-1)^{2019} \\ 0 & 1^{2021} & 2^{2022} \end{vmatrix}$$
$$= 1\{2^{4040} + 1\} + 1\{2^{2017}\} \\= \{(4)^{2020} + 1\} + 2 \cdot 2^{2016} \\\Rightarrow (5 - 1)^{2020} + 1 + 2 \cdot 4^{1008} \\= (5 - 1)^{2020} + 1 + 2 \cdot (5 - 1)^{1008} \end{vmatrix}$$

remainder, $(-1)^{2020} + 1 + 2 \cdot (-1)^{1008}$ = 1 + 1 + 2 = 4

$$\begin{vmatrix} 1 & x & x^{2} \\ 1 & x^{2} & x^{4} \\ 1 & x^{3} & x^{6} \end{vmatrix} = 3x^{4} \implies (x - x)^{2} (x^{2} - x^{3}) (x^{3} - x) =$$

 $3x^{4}$ $\Rightarrow x = 0 \text{ or } (1 - x)^{2} (x^{2} - 1) = 3$ $\Rightarrow x^{4} - 2x^{3} + 2x - 4 = 0$ $\Rightarrow (x - 2) (x^{3} + 2) = 0$ $\Rightarrow \text{ integer values are } 0, 2$

JEE-MAIN

PREVIOUS YEAR'S

Q.1 (1)

$$D = \begin{vmatrix} a^2 + 3a + 2 & a+1 & 1 \\ a^2 + 5a + 6 & a+2 & 1 \\ a^2 + 7a + 12 & a+3 & 1 \end{vmatrix}$$
$$R_2 \rightarrow R_2 - R_1$$
$$R_3 \rightarrow R_3 - R_1$$
$$D = \begin{vmatrix} a^2 + 3a + 2 & a+1 & 1 \\ 2a + 4 & 1 & 0 \\ 4a + 10 & 2 & 0 \end{vmatrix} = 4a + 8 - 4a - 10 = -2$$

Q.2 (1)

$$\Delta = \begin{vmatrix} 3 & 2 & -k \\ 1 & -2 & 3 \\ 1 & 2 & -3 \end{vmatrix} = 0 \Longrightarrow k = 3$$
$$\Delta_{x} = \begin{vmatrix} 10 & 2 & -3 \\ 3 & -2 & 3 \\ 5m & 2 & -3 \end{vmatrix} = 0$$
$$\Delta_{y} = \begin{vmatrix} 3 & 10 & -3 \\ 1 & -2 & 3 \\ 1 & 5m & -3 \end{vmatrix} = 6(7 - 10m)$$
$$\Delta_{z} = \begin{vmatrix} 3 & 2 & 10 \\ 1 & -2 & 3 \\ 1 & 2 & 5m \end{vmatrix} = 4(7 - 10m)$$
Hence, k = 3 and m \ne $\frac{7}{10}$

Q.3

(2)

$$D = \begin{vmatrix} 1 & 2 & -3 \\ 2 & 6 & -11 \\ 1 & -2 & 7 \end{vmatrix}$$

$$= 20 - 2(25) - 3(-10)$$

$$= 20 - 50 + 30 = 0$$

$$D_{1} \begin{vmatrix} a & 2 & -3 \\ b & 6 & -11 \\ C & -2 & 7 \end{vmatrix}$$

$$= 20a - 2(7b + 11c) - 3(-2b - 6c)$$

$$= 20a - 14b - 22c + 6b + 18c$$

$$= 20a - 8b - 4c$$

$$= 4(5a - 2b - c)$$

$$D_{2} \begin{vmatrix} 1 & a & -3 \\ 2 & b & -11 \\ 1 & c & 7 \end{vmatrix}$$

$$= 7b + 11c - a(25) - 3(2c - b)$$

$$= 7b + 11c - 25a - 6c + 3b$$

$$= -25a + 10b + 5c$$

$$= -5(5a - 2b - c)$$

$$D_{3} \begin{vmatrix} 1 & 2 & a \\ 2 & 6 & b \\ 1 & -2 & c \end{vmatrix}$$

$$= 6c + 2b - 2(2c - b) - 10a$$

$$= -10a + 4b + 2c$$

$$= -2(5a - 2b - c)$$
for infinite solution

$$D = D_{1} = D_{2} = D_{2} = 0$$

$$\Rightarrow 5a = 2b + c$$

$$(3)$$

$$C_{1} + C_{2} \rightarrow C_{1}$$

$$\begin{vmatrix} 2 & 1 + \cos^{2} x & \cos 2x \\ 1 & \cos^{2} x & \sin 2x \end{vmatrix}$$

$$R_{1} - R_{2} \rightarrow R_{1}$$

$$\begin{vmatrix} 0 & 1 & 0 \\ 2 & \cos^{2} x & \cos 2x \\ 1 & \cos^{2} x & \sin 2x \end{vmatrix}$$

$$R_{1} - R_{2} \rightarrow R_{1}$$

$$\begin{vmatrix} 0 & 1 & 0 \\ 2 & \cos^{2} x & \cos 2x \\ 1 & \cos^{2} x & \sin 2x \end{vmatrix}$$

$$Open w.r.t. R_{1}$$

$$- (2 \sin 2x - \cos 2x) cos 2x - 2 \sin 2x = f(x)$$

$$f(x) \Big|_{max} = \sqrt{1 + 4} = \sqrt{5}$$

(1)

$$\begin{vmatrix} 3 & 4\sqrt{2} & x \\ 4 & 5\sqrt{2} & y \\ 5 & k & z \end{vmatrix} = 0$$

$$R_2 \rightarrow R_1 + R_3 - 2R_2$$

$$\Rightarrow \begin{vmatrix} 3 & 4\sqrt{2} & x \\ 0 & k - 6\sqrt{2} & 0 \\ 5 & k & z \end{vmatrix} = 0$$

$$\Rightarrow (k - 6\sqrt{2})(3z - 5x) = 0$$
if $3z - 5x = 0 \Rightarrow 3(x + 2d) - 5x = 0$

$$\Rightarrow x = 3d \text{ (Not possible)}$$

$$\Rightarrow k - 6\sqrt{2} \Rightarrow k^2 = 72 \qquad \text{Option (1)}$$

Q.6 (2)

Q.7

Q.8

Q.5

$$\log_{10}(4^{x} - 2) = 1 + \log_{10}\left(4^{x} \quad \frac{18}{5}\right)$$

$$(4^{x} - 2) = 10\left(4 \quad \frac{18}{5}\right)$$

$$(4^{x})^{2} + 4 - 4(4^{x}) - 32 = 0$$

$$(4^{x} - 16)(4^{x} + 2) = 0$$

$$4^{x} = 16$$

$$x = 2$$

$$\begin{vmatrix}3 & 1 & 4\\ 1 & 0 & 2\\ 2 & 1 & 0\end{vmatrix} = 3(-2) - 1(0 - 4) + 4(1)$$

$$= -6 + 4 + 4 = 2$$
Q.7 (4)
Q.8 (1)
Q.9 [16]
Q.10 (2)
Q.11 [5]
Q.12 [6]
Q.13 [1]
Q.14 (2)
Q.15 (3)
$$\Delta = \begin{vmatrix}-1 & 1 & 2\\ 3 & -a & 5\\ 2 & -2 & -a\end{vmatrix}$$

Q.4

 $= -1(a^2 + 10) - 1(-3a - 10) + 2(-6 + 2a)$ $= -a^2 - 10 + 3a + 10 - 12 + 4a$ $\Delta = -a^2 + 7a - 12$ $\Delta = -[a^2 - 7a + 12]$ $\Delta = -\left[(a-3)(a-4)\right]$ $\Delta_1 = \begin{vmatrix} 0 & 1 & 2 \\ 1 & -a & 5 \\ 7 & -2 & -a \end{vmatrix}$ = 0 - 1(-a - 35) + 2(-2 + 7a) \Rightarrow a + 35 - 4 + 14a 15a + 31Now $\Delta = 15a + 31$ For inconsistent $\Delta = 0$ \therefore a = 3, a = 4and for a = 3 and $4 \Delta_1 \neq 0$ $n(S_1) = 2$ For infinite solution : $\Delta = 0$ and $\Delta_1 = \Delta_2 = \Delta_3 = 0$ Not possible \therefore n(S₂) = 0 Q.16 (2) Q.17 (4) Q.18 (3) Q.19 (2)

Q.20 (2)

Q.22 (4)

Q.21

Q.23 (1)

JEE-ADVANCED PREVIOUS YEAR'S

[36]

Q.1 (B,C)

$$R_3 \rightarrow R_3 - R_2, R_2 \rightarrow R_2 - R_1$$

 $\begin{vmatrix} (1+\alpha)^2 & (1+2\alpha)^2 & (1+3\alpha)^2 \\ 3+2\alpha & 3+4\alpha & 3+6\alpha \\ 5+2\alpha & 5+4\alpha & 5+6\alpha \end{vmatrix} = -648\alpha$
 $R_3 \rightarrow R_3 - R_2$
 $\begin{vmatrix} (1+\alpha)^2 & (1+2\alpha)^2 & (1+3\alpha)^2 \\ 3+2\alpha & 3+4\alpha & 3+6\alpha \\ 2 & 2 & 2 \end{vmatrix} = -648\alpha$
 $C_3 \rightarrow C_3 - C_2, C_2 \rightarrow C_2 - C_1$

$$\begin{vmatrix} (1+\alpha)^2 & \alpha(2+3\alpha) & \alpha(2+5\alpha) \\ 3+2\alpha & 2\alpha & 2\alpha \\ 2 & 0 & 0 \end{vmatrix} = -648\alpha$$
$$\Rightarrow 2\alpha^2(2+3\alpha) - 2\alpha^2(2+5\alpha) = -324\alpha$$
$$\Rightarrow -4\alpha^3 = -324\alpha$$
$$\Rightarrow \alpha = 0, \pm 9$$

$$|P| = 12\alpha + 20$$

adj $P = \begin{bmatrix} 5\alpha & -10 & -\alpha \\ 3\alpha & -6 & -(3\alpha + 4) \\ 10 & 12 & 2 \end{bmatrix}$
$$\because \frac{Q}{k} = \frac{adj P}{|P|} \qquad \Rightarrow \qquad Q = \frac{k}{|P|} adj P$$

$$\therefore q_{23} = -\frac{k}{8} \Rightarrow \frac{(3\alpha + 4)k}{(12\alpha + 20)} = \frac{k}{8} \Rightarrow \alpha = -1$$

Also $|Q| = \frac{k^3}{|P|} \Rightarrow k = 4$
Hence, (b, c)

Q.3

[2]

$$\begin{vmatrix} x & x^{2} & 1 \\ 2x & 4x^{2} & 1 \\ 3x & 9x^{2} & 1 \end{vmatrix} + \begin{vmatrix} x & x^{2} & x^{3} \\ 2x & 4x^{2} & 8x^{3} \\ 3x & 9x^{2} & 27x^{3} \end{vmatrix} = 10$$
$$\Rightarrow x^{3} \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 1 \\ 3 & 9 & 1 \end{vmatrix} + x^{6} \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 8 \\ 3 & 9 & 27 \end{vmatrix} = 10$$
$$\Rightarrow 2x^{3} + 12x^{6} = 10$$
$$\Rightarrow x^{3} = \frac{5}{6}, -1$$

Hence, no. of distinct x = 2

Q.4 [4]

$$\Delta = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

= $\underbrace{\left(a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 \right)}_{x} - \underbrace{\left(a_3 b_2 c_1 + a_2 b_1 c_3 + a_1 b_3 c_2 \right)}_{y}$
Now if $x \le 3$ and $y \ge -3$

the D can be maximum 6

Q.5

But it is not possible $as x = 3 \Rightarrow each term of x = 1$ and $y = 3 \implies$ each term of y = -1 $\Rightarrow \prod a_i b_i c_i = 1 \text{ and } \prod a_i b_i c_i = -1$ which is contradicition so now next possibility is 4 which is obtained as 1 1 1 $\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 1(1+1) - 1(-1-1) + 1(1-1) = 4$ (A,B,C) $|I - EF| \neq 0$; $G = (I - EF)^{-1} \Longrightarrow G^{-1} = I - EF$ Now, $G \cdot G^{-1} = I = G^{-1} G$ \Rightarrow G (I – EF) = I = (I – EF) G \Rightarrow G – GEF) = I = G – EFG \Rightarrow GEF = EFG [G is Correct] (I - FE) (I + FGE) = I + FGE - FE - FEFGE= I + FGE - FE - F(G - I)E= I + FGE - FE - FGE + FE= I [(B) is Correct] (So 'D' is Incorrect) We have (I - FE) (I + FGE) = I(I)Now FE(I + FGE)= FE + FEFGE= FE + F(G - I)E= FE + FGE - FE= FGE \Rightarrow |FE| |I + FGE| = |FGE| $\Rightarrow |FE| \times \frac{1}{|I - FE|} = |FGE| \text{ (from (1))}$ \Rightarrow |FE| = |I - FE| |FGE| (option (A) is correct)

Probability

EXERCISES

ELEMENTRY

Q.1 (3)

Probability of getting 1 in first throw $=\frac{1}{6}$

Probability of not getting 1 in second throws $=\frac{5}{4}$

Both are independent events, so the required probability $=\frac{1}{6} \times \frac{5}{6} = \frac{5}{36}$.

Q.2 (2)

Total number of ways = 36

Favourable numbers of cases are (1 4), (2, 3), (3, 2),

$$(4, 1), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) = 9$$

Hence the required probability $=\frac{9}{36}=\frac{1}{4}$.

Q.3 (2)

Favourable cases for one are three *i.e.* 2, 4 and 6 and for other are two *i.e.* 3, 6.

Hence required probability = $\left[\left(\frac{3\times 2}{36}\right)2 - \frac{1}{36}\right] = \frac{11}{36}$ {As same way happen when dice changes numbers among themselves}

Q.4 (4)

Let *R* stand for drawing red ball B for drawing black ball and W for drawing white ball. Then required probability

= P(WWR) + P(BBR) + P(WBR) + P(BWR) + P(WRR) +

P(BRR) + P(RWR) + P(RBR).

$$= \frac{3.2.2}{8.7.6} + \frac{3.2.2}{8.7.6} + \frac{3.3.2}{8.7.6} + \frac{3.3.2}{8.7.6} + \frac{3.2.1}{8.7.6} + \frac{3.2.1}{8.7.6} + \frac{3.2.1}{8.7.6} + \frac{2.3.1}{8.7.6} + \frac{2.3.1}$$

Q.5 (4)

P (at least 1H) = 1 - P (No head)= 1 - P (four tail)

$$=1-\frac{1}{16}=\frac{15}{16}$$

Q.6 (2)

Let 100 students studying in which 60 % girls and 40 % boys. Boys = 40, Girls = 60

25% of boys offer Maths = $\frac{25}{100} \times 40 = 10$ Boys

10% of girls offer Maths $=\frac{10}{100} \times 60 = 6$ Girls It means, 16 students offer Maths.

:. Required probability $=\frac{6}{16}=\frac{3}{2}$.

Q.7 (1)

Total number of ways $=2^{n}$ If head comes odd times, then favourable ways $=2^{n-1}$

$$\therefore$$
 Required probability $=\frac{2^{n-1}}{2^n}=\frac{1}{2}$.

Here
$$P(A) = \frac{3}{4}$$
, $P(B) = \frac{4}{5}$
 \therefore Required probability
 $= P(A).P(\overline{B}) + P(\overline{A}).P(B) = \frac{7}{20}.$

$$Q.9$$
 (3)

 $=\frac{{}^{3}C_{3}+{}^{7}C_{3}+{}^{4}C_{3}}{{}^{14}C_{2}}$

$$=\frac{1+35+4}{14.13.2}=\frac{40}{14.26}=\frac{10}{91}$$

Required

Q.10 (2)

Total ways of arrangements $=\frac{8!}{2!.4!}$

probability

$\bullet w \bullet x \bullet y \bullet z \bullet$

Now 'S' can have places at dot's and in places of w, x, y, z we have to put 2A's, one I and one N.

Therefore favourable ways $=5\left(\frac{4!}{2!}\right)$

Hence required probability $=\frac{5.4!2!4!}{2!8!}=\frac{1}{14}$

Probability

Q.11 (3)

n=Total number of ways = 6^5 A total of 12 in 5 throw can be obtained in following two ways –

(i) One blank and four $3's = {}^5C_1 = 5$

or (ii) Three 2's and two $3's = {}^{5}C_{2} = 10$

Hence, the required probability $=\frac{15}{6^5}=\frac{5}{2592}$.

Q.12 (2)

m rupee coins and n ten paise coins can be placed in a

line in $\frac{(m+n)!}{m!n!}$ ways.

If the extreme coins are ten paise coins, then the remaining n-2 ten paise coins and m one rupee coins

can be arragned in a line in $\frac{(m+n-2)!}{m!(n-2)!}$ ways.

Hence the required probability

$$=\frac{\frac{(m+n-2)!}{m!(n-2)!}}{\frac{(m+n)!}{m!n!}}=\frac{n(n-1)}{(m+n)(m+n-1)}.$$

Q.13 (1)

Required probability $=\frac{{}^{3}C_{1}}{{}^{7}C_{1}} \times \frac{{}^{2}C_{1}}{{}^{6}C_{1}} = \frac{1}{7}$

Q.14 (4)

3 cards are drawn out of 26 red cards (favourable)

$$=\frac{{}^{26}C_3}{{}^{52}C_3}=\frac{26!}{3!23!}\times\frac{3!49!}{52!}=\frac{2}{17}.$$

Q.15 (3)

Required probability
$$=\frac{{}^{37}C_2}{{}^{38}C_3}=\frac{\begin{pmatrix} 37\\2\\\end{pmatrix}}{\begin{pmatrix} 38\\3 \end{pmatrix}}.$$

Q.16 (4)

Required probability

$$=\frac{{}^{5}C_{1}{}^{4}C_{1}}{{}^{12}C_{1}{}^{12}C_{1}}+\frac{{}^{7}C_{1}{}^{8}C_{1}}{{}^{12}C_{1}{}^{12}C_{1}}=\frac{20+56}{144}=\frac{76}{144}$$

Q.17 (3)

Since we have P(A + B) = P(A) + P(B) - P(AB) $\Rightarrow 0.7 = 0.4 + P(B) - 0.2 \Rightarrow P(B) = 0.5$.

Q.18 (4)

Required probability is $P(\text{Red} + \text{Queen}) - P(\text{Red} \cap \text{Queen})$

 $= P(Red) + P(Queen) - P(Red \cap Queen)$

$$=\frac{26}{52}+\frac{4}{52}-\frac{2}{52}=\frac{28}{52}=\frac{7}{13}.$$

Q.19 (1)

Since we have

$$P(A \cup B) + P(A \cap B) = P(A) + P(B) = P(A) + \frac{P(A)}{2}$$
$$\Rightarrow \frac{7}{8} = \frac{3P(A)}{2} \Rightarrow P(A) = \frac{7}{12}.$$

Q.20 (3)

$$1 - P(A' ∩ B') = 0.6, P(A ∩ B) = 0.3, \text{ then}$$

$$P(A' ∪ B') = P(A') + P(B') - P(A' ∩ B')$$

$$\Rightarrow 1 - P(A ∩ B) = P(A') + P(B') - 0.4$$

$$\Rightarrow P(A') + P(B') = 0.7 + 0.4 = 1.1.$$

Q.21 (2)

$$\begin{split} P(A') &= 0.3 , \therefore \ P(A) = 0.7 \\ P(B') &= 0.6 , \ P(B) = 0.4 \ \text{and} \ P(A \cap B') = 0.5 \\ P(A \cup B') &= P(A) + P(B') - P(A \cap B') \\ &= 0.7 + 0.6 - 0.5 = 0.8. \end{split}$$

Q.22 (1)

$$P\left(\frac{\overline{B}}{\overline{A}}\right) = \frac{1 - P(A \cup B)}{P(\overline{A})} = \frac{1 - \frac{23}{60}}{1 - \frac{1}{3}} = \frac{37}{60} \times \frac{3}{2} = \frac{37}{40}.$$

Q.23 (1)
$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{(1/10)}{(1/4)} = \frac{2}{5}.$$

Q.24 (3)

Let P(A) = probability of a boy in two children $= \frac{3}{4}$ Because cases are BB, BG, GB, GG = 4 Favourable cases are BB, BG, GB = 3 The probability that the second child is also boy is P(A \cap B) $= \frac{1}{4}$ We have to find P(B/A) $= \frac{P(A \cap B)}{P(A)} = \frac{1/4}{3/4} = \frac{1}{3}$.

Q.25 (2)

We define the following events :

 A_1 : Selecting a pair of consecutive letter from the word LONDON.

 \mathbf{A}_{2} : Selecting a pair of consecutive letters from the word CLIFTON.

E: Selecting a pair of letters 'ON'.

Then $P(A_1 \cap E) = \frac{2}{5}$; as there are 5 pairs of consecutive letters out of which 2 are ON.

 $P(A_2 \cap E) = \frac{1}{6}$; as there are 6 pairs of consecutive

letters of which one is ON.

 \therefore The required probability is

$$P\left(\frac{A_1}{E}\right) = \frac{P(A_1 \cap E)}{P(A_1 \cap E) + P(A_2 \cap E)} = \frac{\frac{2}{5}}{\frac{2}{5} + \frac{1}{6}} = \frac{12}{17}.$$

Q.26 (2)

$$P(A) = \frac{40}{100}, P(B) = \frac{25}{100} \text{ and } P(A \cap B) = \frac{15}{100}$$

So
$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{15/100}{40/100} = \frac{3}{8}.$$

Q.27 (1)

$$P(A \cap B) = P(A).P(B) = \frac{1}{6}$$

$$P(\overline{A} \cap \overline{B}) = \frac{1}{3} = 1 - P(A \cup B)$$

$$\Rightarrow \frac{1}{3} = 1 - [P(A) + P(B)] + \frac{1}{6} \Rightarrow P(A) + P(B) = \frac{5}{6}.$$
Hence P(A) and P(B) are $\frac{1}{2}$ and $\frac{1}{3}$.

Q.28 (1)

(i) This question can also be solved by one student(ii) This question can be solved by two students simultaneously

(ii) This question can be solved by three students all together.

$$P(A) = \frac{1}{2}, P(B) = \frac{1}{4}, P(C) = \frac{1}{6}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$-[P(A).P(B) + P(B).P(C) + P(C).P(A)] + [P(A).P(B).P(C)]$$

 $= \frac{1}{2} + \frac{1}{4} + \frac{1}{6} - \left[\frac{1}{2} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{2}\right] + \left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{6}\right] = \frac{33}{48}$ **Q.29** (1)

> Let E be the event in which all three coins shows tail and F be the event in which a coin shows tail. \therefore F = {HHT, HTH, THH, HTT, THT, TTH, TTT}

and $E = \{TTT\}$ Required probability

$$= P(E/F) = \frac{P(E \cap F)}{P(E)} = \frac{1}{7}.$$

Q.30 (4)

$$P\left(\frac{B}{A}\right) = \frac{1}{2} \Rightarrow \frac{P(B \cap A)}{P(A)} = \frac{1}{2} \Rightarrow P(B \cap A) = \frac{1}{8}$$
$$P\left(\frac{A}{B}\right) = \frac{1}{4} \Rightarrow \frac{P(A \cap B)}{P(B)} = \frac{1}{4} \Rightarrow P(B) = \frac{1}{2}$$
$$P(A \cap B) = \frac{1}{8} = P(A).P(B)$$

 \therefore Events A and B are independent.

Now,
$$P\left(\frac{A'}{B}\right) = \frac{P(A' \cap B)}{P(B)} = \frac{P(A')P(B)}{P(B)} = \frac{3}{4}$$

and
$$P\left(\frac{B'}{A'}\right) = \frac{P(B' \cap A')}{P(A')} = \frac{P(B')P(A')}{P(A')} = \frac{1}{2}$$
.

Q.31 (4)

Let P(fresh egg) =
$$\frac{90}{100} = \frac{9}{10} = p$$

P(rotten egg) =
$$\frac{10}{100} = \frac{1}{10} = q$$
; n = 5, r = 5

So the probability that none egg is rotten

$$= {}^{5}C_{5}\left(\frac{9}{10}\right)^{5} \cdot \left(\frac{1}{10}\right)^{0} = \left(\frac{9}{10}\right)^{5} \cdot \left(\frac{1}{10}\right)^{0} = \left(\frac{9}{10}\right)^{5} \cdot \left(\frac{9}{10}\right)^{1} \cdot \left(\frac{9}{10}\right)^{1}$$

Q.32 (1)

Required probability

$$= {}^{8}C_{1}\left(\frac{1}{20}\right)^{1}\left(\frac{19}{20}\right)^{7} + {}^{8}C_{0}\left(\frac{1}{20}\right)^{0}\left(\frac{19}{20}\right)^{8} = \frac{27}{20}\left(\frac{19}{20}\right)^{7}$$

Q.33 (4)

We have
$$p = \frac{3}{4} \Rightarrow q = \frac{1}{4}$$
 and $n = 5$

Therefore required probability

$$= {}^{5}C_{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2} + {}^{5}C_{4}\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right) + {}^{5}C_{5}\left(\frac{3}{4}\right)^{5}$$
$$= \frac{10.27}{4^{5}} + \frac{5.81}{4^{5}} + \frac{243}{4^{5}} = \frac{270 + 405 + 243}{1024} = \frac{459}{512}$$

Q.34 (1)

The probability that student is not swimmer

 $p = \frac{1}{5}$ and probability that student is swimmer $q = \frac{4}{5}$ ∴ Probability that out of 5 students 4 are swimmer

$$= {}^{5}C_{4}\left(\frac{4}{5}\right)^{4}\left(\frac{1}{5}\right)^{5-4} = {}^{5}C_{4}\left(\frac{4}{5}\right)^{4}\left(\frac{1}{5}\right).$$

Q.35 (3)

Probability of failure = $\frac{1}{3}$

Probability for getting success $=\frac{2}{3}$

.: Required probability

$$= {}^{4}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{0} + {}^{4}C_{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)$$
$$= \left(\frac{2}{3}\right)^{4} + 4\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right) = \frac{16}{27}$$

Q.36 (4)

We are given that
$$n = 3$$
, $p = \frac{1}{6}$

$$q = \frac{5}{6}$$

Mean = np = $3 \times \frac{1}{6} = \frac{1}{2}$
Variance = nqp = $3 \times \frac{1}{6} \times \frac{5}{6} = \frac{5}{12}$.

Q.37 (2)

Obviously,
$$p = \frac{2}{6} = \frac{1}{3} \Rightarrow q = 1 - \frac{1}{3} = \frac{2}{3}$$

also n = 2. Therefore, variance

$$= \operatorname{npq} = 2 \times \frac{1}{3} \times \frac{2}{3} = \frac{4}{9}.$$

Q.38 (1)

For binomial distribution, mean = np and variance = npq

n = 3 p =
$$\frac{2}{6} = \frac{1}{3}$$
, q = 1 - p = 1 - $\frac{1}{3} = \frac{2}{3}$
So, mean (μ) = 3 × $\frac{1}{3} = 1$
Variance (σ^2) = 3 × $\frac{1}{3} × \frac{2}{3} = \frac{2}{3}$

Q.39 (1)

Let E denote the event that a six occurs and A the event that the man reports that it is a '6', we have

$$P(E) = \frac{1}{6}, P(E') = \frac{5}{6}, P(A / E) = \frac{3}{4}$$
 and

$$P(A/E') = \frac{1}{4}$$

From Baye's theorem,

$$P(E / A) = \frac{P(E).P(A / E)}{P(E).P(A / E) + P(E').P(A / E')}$$
$$= \frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4}} = \frac{3}{8}.$$

Q.40 (3)

Let *A* be the event of selecting bag *X*, *B* be the event of selecting bag *Y* and *E* be the event of drawing a white ball, then P(A) = 1/2, P(B) = 1/2,

P(E/A) = 2/5 P(E/B) = 4/6 = 2/3.

$$P(E) = P(A)P(E / A) + P(B)P(E / B) = \frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{2}{3} = \frac{8}{15}$$

JEE-MAIN OBJECTIVE QUESTIONS

Q.1 (3)

Since sum of
$$1+2+3+\ldots 9=\frac{9\times 10}{2}=45$$
 is divisible by 9, hance all no. will be divisible by 9.

$$x + \frac{100}{x} > 50$$

$$x = 1 \text{ Satisfies} = 2 \quad \text{"} \quad \text{] 2 Numbers. Ans P} = \frac{55}{100}$$

$$= 3 \text{ does'nt satisfies}$$

$$= 48 \text{ Satisfies} = 100 \text{ Satisfies} \quad \text{] 53 Numbers}$$

Q.3 (1)

Max sum =
$$12$$

$$6+6=12
6+5=11
6+4=10
5+5=10
5+6=11
4+6=10$$
6 cases

$$P = \frac{6}{36} = \frac{1}{6} = \frac{1}{6}$$

Q.4 (1)

$$\frac{\frac{2n-2!}{n-1!\,n-1!\,2!} \times 2!}{\frac{2n!}{n!\,n!\,2!}} = P$$

Given that, $\alpha^2 + \beta^2 = \alpha + \beta \& \alpha^2 \beta^2 = \alpha \beta$ 4 possibilities (1, 1), (1, 0), (0, 0), (ω , ω^2)

Required probability = $\frac{2}{4} = \frac{1}{2}$

Q.6 (4)

Total ways in which 5 persons can exit at 8 floor = 8^5 (each has 8 options) No. of ways of selecting 5 floor out of 8 = ${}^{8}C_{5}$ No. of ways of exifing at 5 selected floor = 5!

$$\therefore \text{ Probability} = \frac{{}^{8}C_{5} \times 5!}{8^{5}}$$

Q.7 (1) Required probability

$$=\frac{{}^{5}C_{4} \times {}^{3}C_{2} \times {}^{2}C_{1}}{{}^{10}C_{7}}=\frac{1}{4}$$

Q.8

(1) ${}^{4}C_{1} \times {}^{13}C_{9} \times {}^{39}C_{4} =$ Formula card site any 9 cards any 4 cards from 39 cards ${}^{52}C_{13} =$ total case

$$\mathbf{P} = \frac{{}^{4}\mathbf{C}_{1} \times {}^{13}\mathbf{C}_{9} \times {}^{39}\mathbf{C}_{4}}{{}^{52}\mathbf{C}_{13}}$$

Q.9

(4)

 $P(A) = \frac{13}{52} = \frac{1}{4}$ Let P(A) is prob of card drawn is spade & P(B) is card drawn is an ace then

$$P(B) = \frac{4}{52} = \frac{1}{13}$$

Q.10 (4)

Let
$$D = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Each element can be either '0' or '1' Total determinants = $2 \times 2 \times 2 \times 2 = 16$ Non-Negative Determinants :

$$\begin{bmatrix} 1 & b \\ c & 1 \end{bmatrix} \implies 2 \times 2 = 4$$
$$\begin{bmatrix} 1 & b \\ c & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & b \\ c & 1 \end{bmatrix} = {}^{2}C_{1} + {}^{2}C_{1} = 4$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Only one outof a,b,c or d is equal to '1'

Q.11 (3)

Throughing both cubes is an independent event and occurring of red 8 blue color on top face is mutually exclusive let there be 'x' blue faces on the second cube. Given,

$$\frac{\frac{1}{6} \times \frac{x}{6}}{\underset{\text{at the top}}{\text{Blue}}} + \frac{5}{6} \times \frac{(6-x)}{6} = \frac{1}{2}$$
$$\implies x + 30 - 5x = 18$$
$$\implies 4x = 12 \implies x = 3$$
$$\therefore \text{ No. of red faces} = (6-x) = (6-3) = 3$$

Q.12 (4)

$$\Rightarrow \frac{1}{6} \times \frac{2}{3} = \frac{1}{9}$$
$$\Rightarrow \frac{1}{3} \times \left(\frac{1}{6} \times 3\right) = \frac{1}{6}$$
$$P = \frac{1}{9} + \frac{1}{6} = \frac{2+3}{18} = \frac{5}{18}$$
$$P_1 = \frac{13}{18}$$

adds against = $\frac{13}{5}$

Q.13

(4)

 $p_1 + p_2 + p_3 + p_4 = 1$ in follows

Q.14 (3)

$$2+6=83+5=84+4=86+2=85+3=8$$

Total = 5

 $P = \frac{fav}{Total} = \frac{1}{5}$

in D obvious solution

Q.15 (1)

Required Probability

$$=\frac{3}{9}\times\frac{6}{8}+\frac{6}{9}\times\frac{5}{8}=\frac{6}{9\times8}(5+3)=\frac{2}{3}$$

Q.16 (1)

Total = m + n

$$(\mathbf{w}, \mathbf{w}) \Rightarrow \frac{\mathbf{m}}{\mathbf{m} + \mathbf{n}} \times \frac{\mathbf{m} - 1}{\mathbf{m} + \mathbf{n} - 1}$$
(1)

$$(B, w) \Rightarrow \frac{n}{m+n} \times \frac{m}{m+n-1}$$
(2)

Total proof = (w, w) + (B, w)

$$= \frac{m}{m+n(m+n-1)}(m+n-1) = \frac{m}{m+n}$$

Q.17 (4)

Required Probability

$$=\frac{{}^{7}C_{3}-2}{{}^{10}C_{3}}=\frac{11}{40}$$

Q.18 (1)

Required probability

$$=\frac{{}^{3}C_{2}\times1\times1}{2^{3}-1}=\frac{3}{7}$$

Q.19 (2)

Required Probability

$$= \frac{1}{2} \left(\frac{{}^{4}C_{1} \times 2 + {}^{24}C_{1} \times 3 + {}^{36}C_{1} \times 4}{32 \times 63} \right)$$
$$= \frac{1}{2} \left(\frac{8 + 72 + 36 \times 4}{32 \times 63} \right) = \frac{1}{2} \left(\frac{1}{9} \right) = \frac{1}{18}$$

Q.20 (4)

$$\begin{bmatrix} A \\ B \\ If A \neq B \\ 1 & 5 \\ 5 & 1 \\ 4 & 222 - 11 \\ \frac{4}{36} + \frac{4}{36 \times 36} = \frac{148}{1296} \end{bmatrix}$$

$$\begin{bmatrix} B \\ If A = B \\ 1 & \frac{3}{2} & \frac{2}{3} \\ 2 & 4 \\ 2 & 4 \\ 1 & \frac{2}{3} & \frac{1}{3} \\ 2 & 4 \\ 1 & \frac{2}{3} & \frac{1}{3} \\ 1 & \frac{1}{3} \\ 1 & \frac{1}{3} & \frac{1}{3} \\ 1 &$$

Q.21 (1)

squared of a no. can have 1, 4, 6, 9, 5 So P = (9/25)

Q.22 (2)

Required probability

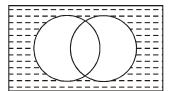
$$= \frac{{}^{3}C_{1}{}^{3}C_{1}{}^{3}C_{1} + {}^{2}C_{1}{}^{2}C_{1}{}^{2}C_{1} + {}^{3}C_{1}{}^{2}C_{1}{}^{2}C_{1} \times 2}{5 \times 5 \times 5}$$
$$= \frac{59}{125}$$

Q.23 (1)

Foce cards = Tens = 4Total removed cards = Remaining cards =

$$\therefore P(A) = \frac{4}{36}; P(H) = \frac{9}{36}; P(S) = \frac{9}{36}$$
$$\Rightarrow 9P(A) = 4P(H)$$

Q.24 (3) A^c – B



 $= (A \cup B)^{C}$

•

$$p(A) = \frac{1}{6}, p(B) = \frac{2}{6}$$

 $A = \{1, 3, 5\} B = \{3, 6\}$

 $B \not\subset A$. $B-A=\{6\}$ as follows

Q.26 (1)

Letters Digits

$$P(A) = P(\text{letter pallindrome}) = \frac{26 \times 26 \times 1}{26 \times 26 \times 26} = \frac{1}{26}$$
$$P(B) = P(\text{Digit Pallendrome}) = \frac{10 \times 10 \times 1}{10 \times 10 \times 10} = \frac{1}{10}$$

P(Both letter & Dight Pallindrome)

$$P(A \cap B) = \frac{26 \times 26 \times 1 \times 10 \times 10 \times 1}{26 \times 26 \times 26 \times 10 \times 10 \times 10} = \frac{1}{260}$$

$$\Rightarrow P(A \cup B) = P(A) + P(B) = P(A \cap B)$$

$$= \frac{1}{10} + \frac{1}{26} - \frac{1}{260} = \frac{7}{52}$$

Q.27 (4)

Let the probabilities of $A \cap B$, A, B & $A \cup B$ be a - 3d, a - d, a + d, a + 3d in AP Given, (a - d) = 2d a = 3d 2P(A) = 2(a - d) = 2(2d) = 4d& P(B) = a + d = 3d + d = 4d $\Rightarrow 2P(A) = P(B)$

Q.28 (1) P(atleast / W) = P(1W, 1M) + P(2W₁ OM)

$$=\frac{5\times8}{{}^{13}\text{C}_2}+\frac{{}^{5}\text{C}_2}{{}^{13}\text{C}_2}=\frac{25}{39}$$

- Q.29 (1) A = (1, 3, 5), $A \cap B = (3, 5)$ $P (B/A) = P (B \cap A) / p(A) = 2/3$
- **Q.30** (4) P(A) = 1/3 P(B) = 1/4 & P(B) = 3/4 $P(T T) = 1/6 1/3 1/4 P(FF) = 5/6 2/3 3/4 (1/5)^2$

$$P(correct) = \frac{P(TT)}{P(TT) + P(FF)}$$

 $P(A \text{ Late }) = \frac{1}{5}$ $P(B \text{ Late }) = \frac{7}{25}$ $P(B \text{ Late }) = \frac{9}{10}$ (i) neither bus is late $P(\overline{A} \cap \overline{B}) = P(\overline{A} \cup \overline{B}) = 1 - P(A \cup B)$ $\frac{P(B \cap A)}{P(A)} = \frac{9}{10}$ $P(B \cap A) = \frac{9}{10} \times P(A)$ $= \frac{9}{10} \times \frac{1}{5} = \frac{9}{50}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= \frac{1}{5} + \frac{7}{25} - \frac{9}{50} = \frac{3}{10}$

 $1 - P(A \cup B) = 7/10$

(ii)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{9}{50}}{\frac{7}{15}} = \frac{9}{14}$$

Q.32 (2)

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) ∴ P(A ∩ B) = P(A) · P(B) because A & B are independent events ⇒ P(A ∪ B) = 1 – P(\overline{A}) · P(\overline{B}) ⇒ 0.8 = 1 – (0.7) · (a) ⇒ (0.7)a = 1 – 0.8 = 0.2 ⇒ a = $\frac{0.2}{0.7}$ ⇒ a = $\frac{2}{7}$

Q.33 (3)

1 - P(BB) $1 - 1/2 \times 1/2 = 1 - 1/4 = 3/4$

Q.34 (2) $5 \rightarrow 3$

$$\frac{20}{3} \rightarrow \frac{3}{5} \times \frac{20}{3} = 4$$

$$P(B) = \frac{4}{10}$$

$$5 \rightarrow 2$$

$$\frac{20}{3} \rightarrow \frac{2}{5} \times \frac{20}{3} = \frac{8}{3}$$

$$P(C) = \frac{8}{3 \times 10} = \frac{4}{15}$$

Q.35 (3)

$$p(A) = \frac{1 \times 6}{36} = \frac{1}{36} , \qquad p(B) = \frac{6}{36} = \frac{1}{6}$$

$$\begin{cases} 6+1\\ 5+2\\ 4+3 \end{cases} A \cap B = \frac{1}{36} ; p(A \cap B) = p(A) \times p(B)$$

Q.36 (2) A and B are independent events

:
$$P(A) = P(B) = \frac{1}{13}$$

Q.37 (1)

$${}^{3}C_{2}P^{2} (1-P) = 12 {}^{3}C_{3}P^{3}$$

 $1-P = 4P \Rightarrow \frac{1}{5} = p = \frac{11}{243}$

Q.38 (3)
2W & 4B

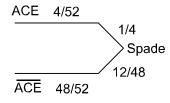
$$P = {}^{5}C_{4} \times \left(\frac{2}{6}\right)^{4} \left(\frac{4}{6}\right)^{1} + {}^{5}C_{5} \left(\frac{2}{6}\right)^{5} = \frac{11}{243}$$
Q.39 (3)
 $\frac{3}{5} \times \frac{2}{4} \times 30 + \frac{3}{5} \times \frac{2}{4} \times 40 + \frac{2}{5} \frac{1}{4} \times 20$
Q.40 (2)
Sol. $E_{A} \left[\frac{1}{6} + \left(\frac{5}{6}\right)^{2} \frac{1}{6} + \left(\frac{5}{6}\right)^{4} \frac{1}{6} + \dots \right] \times 99$
 $= \frac{99}{6} \frac{B6}{1 - \frac{25}{36}} = 54$
Q.41 (3)
A = event it is chosen from A
P(A) = 3/5
P (B) = 2/5
P (D) = P(A) . $P\left(\frac{D}{A}\right) + P(B) P\left(\frac{D}{B}\right)$
 $= \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{1}{5}$
 $= \frac{6}{25} + \frac{2}{25} = \frac{8}{25}$

Q.42 (3)

Required Probability

$$= \frac{\left(\frac{1}{4} \times 1\right)}{\left(\frac{3}{4} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{1}{4} \times 1 \times 1 \times 1\right)}$$
$$= \frac{\left(\frac{1}{4}\right)}{\frac{1}{4}\left(\frac{3}{216} + 1\right)} = \frac{216}{219}$$

Q.43 (1)



Required probability =
$$\frac{\frac{4}{52} \times \frac{1}{4}}{\frac{4}{52} \times \frac{1}{4} + \frac{48}{52} \times \frac{12}{48}} = \frac{1}{13}$$

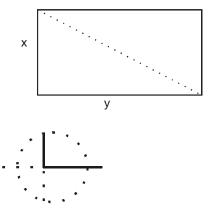
Q.44 (2)

$$\frac{np}{npq} = \frac{3}{2} \Rightarrow q = \frac{2}{3} \Rightarrow p = \frac{1}{3}$$
$$r \le \frac{11}{1 + \frac{2}{3}} \qquad \Rightarrow r \le \frac{10}{3}$$
$$\Rightarrow r \le 3.33$$

thus 3 succes is most parallal.

 $\begin{array}{c} 0 < x < 10 \; x^2 + y^2 < 100 \\ 0 < y < 10 \end{array}$

$$p = \frac{\frac{1}{4}\prod \times 10^2}{10 \times 10}$$



 $\mathbf{P} = \frac{\pi}{4}$

JEE-ADVANCED OBJECTIVE QUESTIONS

(A)

Q.1

Since line are more ${}^{N}C_{M}$ are those lies where telegrams will go

 ${}^{\rm N}C_{\rm M} \times M ! = far$

Total = N^{M} [As first telegram can go in any one of n lies]

[As 2nd telegram can go in any one of n lies]

$$P = \frac{{}^{N}C_{M}M!}{N^{M}}$$

Q.2 (B)

Total cases
$$x^8 : (x^0 + x^1 + ...x^6)^4 = \left(\frac{1 - x^7}{1 - x}\right)^4$$

= $(1 - x^7)^4 (1 - x)^{-4}$
= $(1 - 2x^7)^2 (1 - x)^{-4} = (1 - 4x^7) (1 - x)^{-4}$
Total ways = $7^{4 + 8 - 1}C_8 - 4^{4 + 1 - 1}C_1 = {}^{11}C_8 - 4 \times 4$
= $165 - 16 = 149$.
P = $\frac{149}{7^4}$

Q.3 (B)

Unit digit in number	Unit digit in number	Unit digit in product
Odd	Odd	Odd
Odd	Even	Even
Even	Odd	Even
Even	Even	Even

$$p = \frac{3}{4}$$
$$q = \frac{1}{4}$$

$$\frac{p}{q} = 3$$

Q.4 (D)

 1^{st} coupeon can be selected in 9 ways 2^{nd} coupeon can be selected in 9 ways 3^{rd} coupeon can be selected in 9 ways 9^7 ways – when 9 is not take for f= $9^7 - 8^7$ Total = 15^7 .

Q.5 (B)

$$\frac{{}^{6}C_{1} \times {}^{2}C_{1}}{{}^{6}C_{1} \times {}^{6}C_{1}} = \frac{2}{6} = \frac{1}{3}$$

$$\frac{{}^{7}C_{3} \times 1 \times {}^{4}C_{2} \times 1}{7^{7}} = \frac{30}{7^{6}}$$

Q.7 (C) mutually Exclusive event

$$P(A \cup B \cup C) = \frac{1}{6} + \frac{1}{10} + \frac{1}{8} = \frac{47}{120}$$

Q.8 (C)

$$(1)^{4} = \frac{9}{25}$$
(C)
 $(1)^{4} = \frac{9}{25}$

Light changes in 63 second = 3 times Light changes in 1 second = 3/63probability changing light is 3 second

$$=\frac{9}{63}=\frac{1}{7}$$

Q.10 (D)

Required probability

$$=\frac{{}^{5}C_{2}}{{}^{6}C_{2}}+\frac{{}^{5}C_{1}}{{}^{6}C_{2}}\times\frac{{}^{7}C_{1}}{{}^{8}C_{2}} \qquad =\frac{9}{12}=\frac{3}{4}$$

Q.11 (C)

$$p(A \cup B) = p(A) + pB) - p(A \cap B)$$

$$\frac{5}{6} = \frac{1}{2} + p(B) \frac{-1}{2}$$

$$p(B) = \frac{2}{3}$$

$$p(A \cap B) = \frac{1}{3} = p(A) p(B)$$

$$\Rightarrow A \& B \text{ one independent}$$

$$n(s) = \frac{20!}{10! \ 10! \ 2!} \ P(E) = \frac{n(E)}{n(s)}$$

$$n(E) = \frac{18!}{10! 8!}$$

Q.13 (C)
p (Ist class) =
$$\frac{2}{3} \times 0.28 + \frac{1}{3} \times 0.25 = 0.27$$

Q.14 (B)

$$\frac{2}{3}\frac{{}^{3}C_{1} \times {}^{3}C_{1}}{{}^{6}C_{2}} + \frac{1 \times 1}{3 \, {}^{6}C_{6}} = \frac{11}{15}$$

Q.15 (D)

$$p(A/B) = \frac{p(A \cap B)}{p(B)} = \frac{0.1 + 0.1}{0.3} = \frac{2}{3}.$$

similarly evaluate others

Q.16 (C)

Required probability

$$=\frac{7 \times 0.2}{7 \times 0.2 + 3 \times 0.9} = \frac{14}{41} \simeq 0.34$$

0.17 (A)

> U1 - 1W + 1B $U2 \rightarrow 2W + 3B$

$$U3 \rightarrow 3W + 5B$$
 $U4 \rightarrow 4W + 7B$

$$P(W) = \sum_{i=1}^{4} (u_1) P(w/u_i) = \sum_{i=1}^{4} \frac{i^2 + 1}{34} P(w/v_i)$$
$$= \frac{1^2 + 1}{34} \times \frac{1}{2} + \frac{2^2 + 1}{34} \times \frac{2}{5} + \frac{3^2 + 1}{34} \times \frac{3}{8} + \frac{4^2 + 1}{34} \times \frac{4}{11}$$
$$= \frac{569}{1496}$$

Q.18 (A)

A: 1 ball is W & 3 black balls B₁: Urn 1 is chosen B_2 : Urn 2 is chosen

$$P(B_{1}/A) = \frac{P(A/B_{1})P(B_{1})}{P(A/B_{1})P(B_{1}) + P(A/B_{2})P(B_{2})}$$

$$P(B_{1}/A) = \frac{\frac{1}{2} \times \frac{1}{9} \times \left(\frac{5}{9}\right)^{3} \times {}^{4}C_{3}}{\frac{1}{2} \times \frac{1}{9} \times \left(\frac{5}{9}\right)^{3} \times {}^{4}C_{3} + \frac{1}{2} \times \frac{3}{9} \times \left(\frac{6}{9}\right)^{3} \times {}^{4}C_{3}}$$

$$=\frac{125}{287}$$

(C)
KRISHNAGIRI or DHARMAPURI
A = R1 is visible
B₁ = its from KRISHNAGIRI
B₂ = its from DHARMAPURI
P(B₁/A) =
$$\frac{P(A/B_1)P(B_1)}{P(A/B_1)P(B_1) + P(A/B_2)P(B_2)}$$

= $\frac{\frac{1}{2} \times \frac{2}{10}}{\frac{1}{2} \times \frac{2}{10} + \frac{1}{2} \times \frac{1}{9}} = \frac{9}{14}$

Q.20 (A)

m due to equal probability theorem = $\frac{m}{m+n}$

Q.21 (C)

> **a.** The probability of S_1 to be among the eight winners is equal to the probability of S₁ winning in the group, which is given by 1/2.

> **b.** If S_1 and S_2 are in the same pair-then exactly one wins. If S_1 and S_2 are in two separate pairs, then for exactly one of S_1 and S_2 to be among the eight winners, S_1 wins and S_2 loses or S_1 loses and S_2 wins.

> Now the probability of S_1 , S_2 being in the same pair and one wins is (Probability of S_1 , S_2 being in the same pair) \times (Probability of any one winning in the pair). And the probability of S_1, S_2 , being the same pair is

n(E) n(S)

The number of ways 16 players are divided into 8 pairs is

$$n(s) = \frac{16!}{(2!)^8 \times 8!}$$

The number of ways in which 16 persons can be divided in 8 pairs so that S_1 and S_2 are in same pair is

$$n(E) = \frac{14!}{(2!)^7 \times 7!}$$

Therefore, the probability of S_1 and S_2 being in the same pair is

$$\frac{\frac{14!}{(2!)^7 \times 7!}}{\frac{16}{(2!)^8 \times 8!}} = \frac{2! \times 8}{16 \times 15} = \frac{1}{15}$$

The probability any one winning in the pair of S_1, S_2 , is P(certain event)=1.

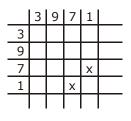
Hence, the probability that the pair of S_1 , S_2 , being in two pairs separately and any one of S_1 , S_2 wins is given by the probability of S_1 , S_2 being in two pairs separately and S_1 wins, S_2 loses + the probability of S_1 , S_2 wins. It is given by

$$\left[1 - \frac{1}{15}\right] \times \frac{1}{2} \times \frac{1}{2} + \left[1 - \frac{1}{15}\right] \times \frac{1}{2} \times \frac{1}{22} \times \frac{14}{15} = \frac{7}{15}$$

Therefore, therequired probabilityis (1/15) + (7/15) + (8/15)

Q.19

Q.22 (D)



Probability

 $=\frac{2}{4\times 4}=\frac{2}{16}$

JEE-ADVANCED

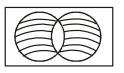
MCQ/COMPREHENSION/COLUMN MATCHING

- Q.1 (A, B, C, D) P(T 1) = p P(T 2) = q P(T 3) = 1/2 $\frac{1}{2} = P(T 1, T 2) + P(T 1, T3) + P(T 1 T 2 T 3)$ $\frac{1}{2} = pq 1/2 + p(1-q) \frac{1}{2} + pq \frac{1}{2}$ $\frac{1}{2} = \frac{pq}{2} + p \Rightarrow 1 = pq + 2p.$ Now, check options.
- Q.2 (A, C) $A = \{1,3,5\};$ $B = \{2,4,6\};$ $C = \{4,5,6\};$ $D = \{1,2\}$
- **Q.3** (C, D)

1 1 $P(E) = \frac{12}{36}$ 2 2 $=\frac{1}{3}$ 3 3 $P(F) = \frac{1}{3}$ 4 5 4 5 6 6 $P(E \cap F) = \frac{2}{36} = \frac{1}{18}$ So neither independent matually Exclusive

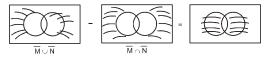
Q.4 (A,B,C)

Q.5 (A,C,D)



$$P = P(M \cup N) - P(M \cap N)$$
$$= P(M) + P(N) - 2P(M \cap N)$$

(c)
$$P(\overline{M} \cup \overline{N}) - P(\overline{M} \cup \overline{N})$$



Q.6 (C, D)
A & B are independent

$$P(A \cup B)^c = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(A \cap B)$$

 $= P(\overline{A}) - P(B) + P(A) P(B) = P(\overline{A}) - P(\overline{A})P(B)$
 $= P(\overline{A})P(\overline{B})$

Q.7 (A,B,C,D)

$$P(E_o) = \frac{3! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!}\right)}{3!} = \frac{1}{3}$$

$$P(E_1) = \frac{{}^{3}C_1(1).2! \left(1 - \frac{1}{1!} + \frac{1}{2!}\right)}{3!} = \frac{1}{2}$$

$$P(E_2) = \frac{{}^{3}C_2(1)^2 \cdot 1! \left(1 - \frac{1}{1!}\right)}{3!} = 0$$

$$P(E_3) = \frac{{}^{3}C_3(1)^{3}}{3!} = \frac{1}{6}$$

So $P(E_0) + P(E_3) = P(E_1)$
 $P(E_0) \cdot P(E_1) = P(E_3)$
 $\therefore E_0 \cap E_1 = \phi$
So $P(E_0 \cap E_1) = 0$
So $P(E_0 \cap E_1) = P(E_2)$

Q.8

(C, D) $P(A \cap B) = P(A) \cdot P(B)$ means a and B are independent Event

So $PP(\overline{A \cup B}) = P(\overline{A} \cap \overline{B})$ = $P(\overline{A}) \cdot P(\overline{B})$ Q.9

Q.10

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = P(A)$$

$$(A,B,C)$$

$$(A,B,C,D)$$

$$(A) P(A/\overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})}$$

$$= \frac{P(A) - P(A \cap B)}{1 - P(B)}$$

$$(B) P(A) + (B) = P(A \cup B) + P(A \cap B)$$

$$P(A) + P(B) - P(A \cup B) = P(A \cap B)$$

$$P(A) + B(B) - 1 \le P(A \cap B)$$

$$P(A) > P(A/B)$$

$$P(A) > \frac{P(A \cap B)}{P(B)}$$

$$P(A) > P(A \cap B)$$
Then
$$P(A/\overline{B}) > P(A)$$

$$\frac{P(A \cap \overline{B})}{P(\overline{B})} > P(A)$$

$$\frac{P(A) - P(A \cap B)}{1 - P(B)} > P(A)$$

$$P(A) - P(A \cap B) > P(A) - P(A) P(B)$$

$$P(A \cap B) < P(A) - P(A \cap B) + P(A) - P(A) P(B)$$

$$P(A \cap B) < P(A) + P(B) = P(A) - P(A) - P(A) = P(A)$$

$$P(A \cap B) < P(A) = P(A) - P(A \cap B) + P(A \cap B) = P(A) - P(A) = P(A)$$

$$P(A \cap B) < P(A) = P(A) + P(A \cap B) = P(A) = P($$

Q.11 (A,C,D)

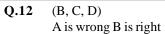
$$P\left(\frac{E_2}{E_1}\right) = \frac{P(E_2 \cap E_1)}{P(E_1)} = P\left(\frac{E_1}{E_2}\right) = \frac{P(E_2 \cap E_1)}{P(E_2)}$$

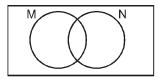
$$\frac{1}{2} = \frac{P(E_2 \cap E_1)}{1/4}$$

$$P(E_2 \cap E_1) = 1/8$$

$$P(E_1/E_2) = \frac{1/8}{P(E_2)}$$

$$\frac{1}{4} PE_2 = \frac{1}{2}$$





C is right

$$P\!\left(\frac{M}{N}\right) + P\!\left(\overline{\frac{M}{N}}\right) = 1$$

Q.13 (A,B)

$$P(A) = \frac{1}{3} \text{ Area of region}$$

$$P(B) = \frac{1}{3} S_1, S_2, S_3$$

$$P(A \cap B) = \frac{1}{3} \text{ is equal}$$
The tigase Shows that A & B are exhaustive Event

Q.14 (A, D)

$$p(x = 4) = {}^{n} c_{4} \left(\frac{1}{2}\right)^{n}$$

$$p(x = 5) = {}^{n} c_{5} \left(\frac{1}{2}\right)^{n}$$

$$p(x = 6) = {}^{n} c_{6} \left(\frac{1}{2}\right)^{n}$$

$$2 {}^{n}c_{5} = {}^{n}c_{4} + {}^{n}c_{6}$$

$$4 {}^{n}c_{5} = {}^{n+1}c_{5} + {}^{n+1}c_{6}$$

$$4 {}^{n}c_{5} = {}^{n+2}c_{6} + {}^{n}c_{6}$$

$$4 \cdot \frac{n!}{5! (n-5)!} = \frac{(n+2)!}{6! (n-4)!}$$

$$4 = \frac{(n+2)(n+1)}{6(n-4)} \Longrightarrow 24 \text{ (n-4)} = (n+2) \text{ (b+1)}$$

n = 7, 14

Q.15 (A, B)

$$(P+q)^{99} r \le \frac{99+1}{1+\left|\frac{1/2}{1/2}\right|} \quad \Rightarrow r \le \frac{100}{2} \quad \Rightarrow r \le 50$$

Terms 50 or 51 are highest

(A)
$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{P(A) + P(B) - P(A \cup B)}{P(B)} \ge \frac{P(A) + P(B) - 1}{P(B)}$$

(B)
$$P(A \cup B) = P(A) + P(B) - P(A) P(B)$$
$$\therefore A \& B \text{ are ind.}$$
$$= P(A) (1 - P(B) + P(B))$$
$$= P(A) P(\overline{B}) + P(B) + 1 - 1$$
$$= P(A) P(\overline{B}) - P(\overline{B}) + 1$$
$$\Rightarrow 1 + P(\overline{B}) (P(A) - 1) = 1 - P(\overline{A}) P(\overline{B})$$

Comprehension #1 (Q. No. 17 and 18)

Q.17

Probability

(D)

$$=\frac{\frac{1}{3}\times\left(\frac{{}^{2}C_{1}\times{}^{3}C_{1}}{{}^{9}C_{2}}\right)}{\frac{1}{3}\times\left[\frac{{}^{1}C_{1}\times{}^{3}C_{1}}{{}^{6}C_{2}}+\frac{{}^{2}C_{1}\times{}^{3}C_{1}}{{}^{9}C_{2}}+\frac{{}^{3}C_{1}\times{}^{4}C_{1}}{{}^{12}C_{2}}\right]}$$

$$=\frac{\frac{6}{36}}{\frac{13}{15}+\frac{6}{30}+\frac{12}{66}}=\frac{\frac{1}{6}}{\frac{1}{5}+\frac{1}{6}+\frac{2}{11}}=\frac{55}{181}.$$
 Ans.

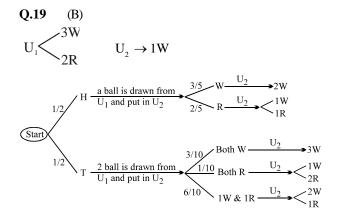
Q.18 (A)

$$B_{1} \begin{pmatrix} 1 & W \\ 3 & R \\ \underline{2 & B} \\ \underline{6} \\ \underline{6} \\ \underline{9} \\ \underline{9} \\ \underline{12} \\ \underline{8} \\ \underline{12} \\ \underline{12}$$

Probability =
$$\left(\frac{1}{6} \times \frac{2}{9} \times \frac{3}{12}\right) + \left(\frac{3}{6} \times \frac{3}{9} \times \frac{4}{12}\right)$$

= $\frac{6+36+40}{72 \times 9} = \frac{82}{648}$. Ans.]

Comprehension # 2 (Q. No. 19 and 20)



Probability

Required Probability =

$$\left(\frac{1}{2} \times \frac{3}{5} \times 1\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{3}{10} \times 1\right) + \left(\frac{1}{2} \times \frac{1}{10} \times \frac{1}{3}\right) + \left(\frac{1}{2} \times \frac{6}{10} \times \frac{2}{3}\right)$$

 $= \frac{3}{10} + \frac{1}{10} + \frac{3}{20} + \frac{1}{60} + \frac{12}{60} = \frac{46}{60} = \frac{23}{30}$. Ans

Q.20 (D)

Required Probability =
$$\frac{\frac{1}{2} \times \frac{3}{5} \times 1 + \frac{1}{2} \times \frac{2}{5} \times \frac{1}{2}}{\frac{23}{30}} =$$

$$\frac{4}{10} \times \frac{30}{23} = \frac{12}{23}$$
. Ans.

Comprehension # 3 (Q. No. 21 to 23)

There are n urns each containing (n + 1) balls such that the ith urn contains i white balls and (n + 1 - i) red balls. Let u_i be the event of selecting ith urn, i = 1, 2, 3, ..., n and w denotes the event of getting a white ball.

Q.23 (B)

(21 to 23)
$$u_1, u_2, u_3, \dots, u_n$$
 are urns

$$\begin{array}{c} u_1 = 1 W + n R \\ u_2 = 2 W + (n-1)R \\ \vdots \\ u_i = i (W) + (n+1-i) R \\ \vdots \\ u_n = n W + 1R \end{array} \right\} urn$$

Given
$$P(u_i) = k_i$$

 \therefore $P(u_1) = k$, $P(u_2) = 2k$ etc
 \therefore $k + 2k + 3k + \dots + nk = 1$

$$k = \frac{1}{\sum n} = \frac{2}{n(n+1)}$$

$$P(u_i) = \frac{2i}{n(n+1)} \qquad (u_i = i^{th} \text{ urn is})$$

selected)

:.

Now W = white ball is drawn

$$P(W) = \sum_{i=1}^{n} P(u_i \cap W) = \sum_{i=1}^{n} P(u_i) \cdot P(W/u_i)$$

$$=\sum_{i=1}^{n}\frac{2i}{n(n+1)}\left(\frac{i}{n+1}\right)$$

$$\frac{2}{n(n+1)^2} \sum_{i=1}^n i^2 = \frac{2}{n(n+1)^2} \cdot \frac{n(n+1)(2n+1)}{6}$$
$$= \frac{2(2n+1)}{(n+1)6}$$

$$= \lim_{n \to \infty} P(W) = \lim_{n \to \infty} \frac{4n\left(1 + \frac{1}{2}\right)}{n\left(1 + \frac{1}{n}\right)} = \frac{1}{6} = \frac{2}{3}$$

Ans

22

Given
$$P(u_1) = C$$

 \Rightarrow Selecting of any urn in equiprobable
 \therefore $P(u_1) = P(u_2) = \dots = P(u_n) = \frac{1}{n}$
In this case $P(W) = P(u_1 \cap W) + P(u_2 \cap W) + \dots + P(u_n \cap W)$
 $= P(u_1) \cdot P(W/u_1) + \dots = P(W/u_n)$
 $= \frac{1}{n} \cdot [P(W/u_1) + P(W/u_2) + \dots + P(W/u_n)]$
 $= \frac{1}{n} \cdot \left[\frac{1}{n+1} + \frac{2}{n+1} + \dots + \frac{n}{n+1}\right]$
 $n(n+1) = 1$

$$=\frac{n(n+1)}{2n(n+1)}=\frac{1}{2}$$

$$P(u_n/W) = \frac{P(u_n \cap W)}{P(W)} = \frac{P(u_n) \cdot P(W/u_n)}{P(W)}$$
$$= 2\left[\frac{1}{2} \cdot \frac{n}{(n-1)}\right] = \frac{2}{n-1} \text{ Ans.}$$

$$= 2\left\lfloor \frac{1}{n} \cdot \frac{n}{(n+1)} \right\rfloor = \frac{2}{n+1} \text{ At}$$

Let $n = \text{even}$

E : event that even numbered urn is selected : either an even numbered or an odd numbered urn will be selected and all events are equally likely

$$\therefore \qquad P(E) = \frac{1}{2}$$

$$P(W/E) = \frac{P(W \cap E)}{P(E)} = \frac{P(W \cap E)}{P(E)} = \frac{P(W^{16} - E)}{W_{4}}$$

$$P(W/E)$$

$$= \frac{1}{n} \left[P(W/u_{2}) + P(W/u_{4}) + \dots + P(W/u_{n}) \right]$$

$$= \frac{1}{n} \left[\frac{2}{n+1} + \frac{4}{n+1} + \frac{6}{n+1} + \dots + \frac{n}{n+1} \right]$$

$$P(W/E) = \frac{2}{n(n+1)} \left[1 + 2 + 3 + \dots + \frac{n}{2} \right]$$

$$= \frac{2}{n(n+1)} \left[\frac{\frac{n}{2} \left(\frac{n}{2} + 1 \right)}{2} \right] = \frac{n(n+2)}{n(n+1)4}$$

$$P(W/E) = 2 \cdot \frac{n+2}{4(n+1)} = \frac{n+2}{2(n+1)} \text{ Ans.}$$

Comprehension #4 (Q. No. 24 to 26)

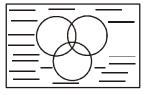
- Q.24 (A)
- Q.25 (C)
- Q.26

25

26

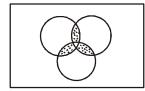
=

(D) 24 $P = 1 - P(A \cup B \cup C)$ $= 1 - P(A) - P(B) - P(C) + P(A \cap C) + P(C \cap A) P(A \cap B \cap C)$



 $= P(A \cap B \cap C)^1 - P(A) - P(B) - P(C) + P(A \cap B) + P(B)$ \cap C) + P(C \cap A)

 $=\mathsf{P}\big(\overline{\mathsf{A}}\cup\overline{\mathsf{B}}\cup\overline{\mathsf{C}}\big)-\mathsf{P}(\mathsf{A})-\mathsf{P}(\mathsf{B})-\mathsf{P}(\mathsf{C})+\mathsf{P}\left(\mathsf{A}\cap\mathsf{B}\right)+$ $P(B \cap C) + P(C \cap A)$



$$P = 1 - P(A \cap B \cap C)$$

= 1 - P(A \cup B \cup C) + P(A) + P(B) + P(C)

Q.23

$$-P(A \cup B)$$

_

Q.28

 $= 1 - P(A \cup B \cup C)^{c} + P(A) + P(B) + P(C) - P(A \cup B)$ $- P(B \models C) - P(C \cap A)$

If n positive integers taken at random and multiplied together, then the chance that the last digit of the product would be

Q.27 (A) \rightarrow (q), (B) \rightarrow (r), (C) \rightarrow (r), (D) \rightarrow (r) (A) Even integers ends in 0, 2, 4, 6, 8. Square of an even integer ends in 4 only when the integer ends either in 2 or 8.

$$\therefore \text{ probability} = \frac{2}{5}$$
(B) P(A ∩ B) = $\frac{1}{6}$

⇒ P(A).P(B) = $\frac{1}{6}$

P(\overline{A}) = $\frac{2}{3}$

⇒ P(A) = $\frac{1}{3}$ ⇒ P(B) = $\frac{1}{2}$

∴ 6P(B/A) = 6P(B) = 3

(C) Required probability = p = ${}^{2}C_{1}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{2}$

∴ 6p = 3

(D) 625p^{2} - 175p + 12 < 0 gives p ∈ $\left(\frac{3}{25}, \frac{4}{25}\right)$

 $\left(\frac{4}{5}\right)^{n-1} \cdot \frac{1}{5} = p$

∴ $\frac{3}{25} < \left(\frac{4}{5}\right)^{n-1} \cdot \frac{1}{5} < \frac{4}{25}$

i.e. $\frac{3}{5} < \left(\frac{4}{5}\right)^{n-1} < \frac{4}{5}$

value of n is 3

(A)-p.q; (B)-r, (C)-p.s

(A) p = $\frac{1}{2}\left(\frac{1}{2}\right)^{3}\frac{1}{2} + \left(\frac{1}{2}\right)^{6}\frac{1}{2}$

 $= \frac{1/2}{1 - (1/2)} = \frac{1/2}{1 - 1/8}$

 $=\frac{1/2}{7/8}=\frac{8}{14}=\frac{4}{7}$

$$\begin{split} q &= \frac{1}{2} \frac{1}{2} + \left(\frac{1}{2}\right)^3 \frac{1}{2} \frac{1}{2} + \dots \\ &= \frac{1/2 \times 1/2}{1 - (1/2)^3} = \frac{1/4}{7/8} = \frac{8}{28} = \frac{2}{7} \\ r &= \frac{1/8}{1 - 1/8} = \frac{1}{7} \\ (B) p &= \frac{1}{6} + \left(\frac{5}{6}\right)^3 \times \frac{1}{6} + \left(\frac{5}{6}\right)^6 \times \frac{1}{6} \dots \\ &= \frac{1}{6} \left[\frac{1}{1 - \frac{125}{2.6}}\right] = \frac{1}{6} \times \frac{216}{91} = \frac{36}{91} \\ q &= \frac{5}{6} \times \frac{1}{6} + \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} + \left(\frac{5}{6}\right)^7 \times \frac{1}{6} \dots \\ &= \frac{5}{6} \times \frac{1}{6} + \frac{5}{6^3} + \frac{5^6}{6^6} \dots \end{bmatrix} = \frac{5}{36} \times \frac{216}{91} = \frac{30}{91} \\ r &= \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} + \left(\frac{5}{6}\right)^3 \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} \dots \\ &= \frac{25}{216} \times \frac{216}{91} = \frac{25}{91} \\ (C) p(A) &= \frac{2}{3}, p(B) = \frac{1}{2}, p(C) = \frac{1}{4} \\ p &= \frac{2}{3} + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{3}{4}\right) \times \frac{2}{3} + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{3}{4}\right)^2 \times \frac{2}{3} \dots \\ &= \frac{2}{3} \left[1 + \frac{3}{24} \dots \right] = \frac{2}{3} \left[\frac{1}{1 - \frac{3}{24}}\right] = \frac{2}{3} \times \frac{24}{21} = \frac{16}{21} \\ q &= \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{2} \times \frac{3}{4} \times \frac{1}{3} \times \frac{1}{2} + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{3}{4}\right)^2 \times \frac{1}{6} \dots \\ &= \frac{1}{6} \left[1 + \frac{3}{24} + \frac{3^2}{24^2} \dots \right] \\ &= \frac{1}{3} \times \frac{1}{2} \times \frac{1}{4} \left[1 + \frac{3}{24} + \frac{3^2}{24^2} \dots \right] = \frac{1}{24} \times \frac{24}{21} = \frac{1}{21} \\ r &= \frac{1}{3} \times \frac{1}{2} \times \frac{1}{4} \left[1 + \frac{3}{24} + \frac{3^2}{24^2} \dots \right] = \frac{1}{24} \times \frac{24}{21} = \frac{1}{21} \end{split}$$

Q.29 (A)
$$\rightarrow$$
 (s),(B) \rightarrow (r),(C) \rightarrow (q), (D) \rightarrow (p)
 $6+2$
(A) 8 $-\frac{5+3}{4+4}$ 5 ways ; 3+5 # 1 cong
 $p = \frac{1}{5}$
(B) A = 2 nd ball in white
B₁ = 1 st ball in white
B₂ = 1 st is black
P (B₁/A) = $\frac{p(A/B_1)p(B_1)}{p(A/B_1)p(B_1) + p(A/B_2)p(B_2)}$
 $= \frac{\frac{4}{7} \times \frac{3}{6}}{\frac{4}{1} \times \frac{3}{6} + \frac{3}{7} \times \frac{4}{6}}$
(c) $\frac{2}{5} = (1-P)P + (1-P)^3P + (1-P)^5P +$
 $\frac{2}{5} = P(1-P)\{1 + (1-P)^2 + (1-P)^4 +\}$
 $= P(1-P)\left(\frac{1-(1-P)^2}{1-(1-P)}\right) = (1-P - (1-P)^3 = \frac{2}{5} \text{ solve}$
for $p = \frac{1}{3}$
(D) (3,3,3,3) or (3,3,3,5) total $\rightarrow 2^4$
For $= 1 + \frac{4!}{3!} = 5 p = \frac{5}{2^4}$

NUMERICAL VALUE BASED

Q.1 [10] $a_1 + a_2 + a_3 + \dots + a_7 = 9k, k \in I.$ Also $a_1 + a_2 + \dots + a_9$ $= 1 + 2 + 5 + \dots + 4 = 45$ $\begin{array}{ll} a_{_8} + a_{_9} \!=\! 45 \!-\! 9k \quad \Longrightarrow \qquad 3 \leq a_{_8} \!+\! a_{_9} \!\leq\! 17 \\ k \!=\! 4 \qquad \qquad \Rightarrow \qquad a_{_8} \!+\! a_{_9} \!=\! 9 \end{array}$ \Rightarrow \Rightarrow \Rightarrow (1, 8)(2, 7), (3, 6), (4, 5) $P(E) = \frac{4}{36} = \frac{1}{9}.$

Q.2 [1]

$$P(C) = \frac{1}{{}^{4}C_{1} + {}^{4}C_{2} + {}^{4}C_{3} + {}^{4}C_{4}} = \frac{1}{2^{4} - 1} = \frac{1}{15} ;$$

$$P(correct) = 1 - P (all wrong)$$

$$= 1 - \frac{14}{1 - 1} \times \frac{13}{1 - 1} \times \frac{12}{1 - 1} \times \frac{11}{1 - 1} \times \frac{10}{1 - 1} = \frac{1}{2}.$$

$$1 - \frac{14}{15} \times \frac{13}{14} \times \frac{12}{13} \times \frac{11}{12} \times \frac{10}{11} = \frac{1}{3}.$$

Q.3 [3]

$$P(x) = \frac{2}{3} \qquad P(y) = \frac{3}{4} \qquad P(z) = ? P$$

;
$$P(2 \text{ bultets}) = \frac{11}{24}$$

$$\frac{11}{24} = \frac{2}{3} \times \frac{3}{4} (1 - P) + \frac{2}{3} \times \frac{1}{4} \times P + \frac{1}{3} \times \frac{3}{4} \times P$$

$$P = \frac{1}{2}$$

[58]

 $\left(\frac{13}{52}\right)^2 \times \left(\frac{13}{52}\right)^2 \times \left(\frac{13}{52}\right)^2 \times \frac{6!}{2!2!2!} = P$

Q.5

[6]

Q.4

A = Letter drawn is vowel; B_1 = written by Englishmen ; $B_2 =$ written by American

$$P(B_{1}/A) = \frac{P(A/B_{1})P(B_{1})}{P(A/B_{1})P(B_{1}) + P(A/B_{2})P(B_{2})}$$
$$= \frac{0.4 \times \frac{3}{6}}{0.4 \times \frac{3}{6} + 0.6 \times \frac{2}{5}} = \frac{5}{11}$$

Q.6 [1]

P(identify high grade tea correctly) = $\frac{9}{10}$; P(identify

low grade tea correctly) = $\frac{8}{10}$

P (Given high grade tea) = $\frac{3}{10}$; P (Given low

grade tea) = $\frac{7}{10}$

P (Low grade tea / says high grade tea)

$$=\frac{\frac{7}{10}\times\frac{2}{10}}{\frac{7}{10}\times\frac{2}{10}+\frac{3}{10}\times\frac{9}{10}}=\frac{14}{41}$$

[1]

10 coins 9 5 paisa 10 coins 5 paisa 1 Rs. 1 p = p (1 Rs. transfered + Back transfered) + p (1 Rs.not transfered)

method 2 when 1 Rs coin is in second purse and did

not came back in first purse this prob. = $\frac{{}^9C_8 \times^l C_l}{{}^{10}C_9} \times$

$$\frac{{}^{18}c_9}{{}^{19}c_9} = \frac{9}{19} \Longrightarrow \text{Required probability} = 1 - \frac{9}{19} = \frac{10}{19}$$

[32]

"PARALLELOGRAM" or "PARALLELOPIPED" \Rightarrow A = RA is visible B₁ = its from PARALLELOGRAM \Rightarrow B₂ = its from PARALLELOPIPED $P(A | B_1) P(B_2)$

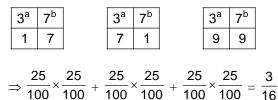
$$P(B_{1}/A) = \frac{P(A/B_{1})P(B_{1})}{P(A/B_{1})P(B_{1}) + P(A/B_{2})P(B_{2})}$$

$$=\frac{\frac{1}{2}\times\frac{2}{12}}{\frac{1}{2}\times\frac{2}{12}+\frac{1}{2}\times\frac{1}{13}}=\frac{13}{19}$$

Q.9 [10]

Unit digit of 3^a = 3, 9, 7, 1 each occurs 25 times in (0, 1, 2,, 99)

Unit digit of 7^b = 7, 9, 3, 1 each occurs 25 times in (0, 1, 2,, 99)



Q.10 [5]

$$\frac{7}{12} = \frac{1}{n+1} \times 1 + \frac{n}{n+1} \times \frac{1}{2}$$
 solve for n we get $n = 5$

KVPY

PREVIOUS YEAR'S

Q.1 (C) For A to win, A

For A to win, A can draw either 3, 6 or 5,6. If A draws 3, 6 then B can draw only 8 &9

Prob. =
$$\frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$$

If A draws 5, 6 then B can draw, any two

Probability =
$$\frac{1}{3} \cdot 1 = \frac{1}{3}$$

Probability = $\frac{1}{9} + \frac{1}{3} = \frac{4}{9}$

Q.2 (C)

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105 till 98 terms 48 terms are even and 48 terms odd

99th term =
$$\frac{99 \times 100}{2}$$
 = even
Total even terms = 48 + 1 = 49
Probability = $\frac{49}{99}$

Q.3 (A)

P1 : 4 copper coins 3 silver coins P2 : 6 copper coins 4 silver coins E = Event of copper coin P(E) = P(P_1). P(E/P_1) + P(P_2). P(E/P_2) = $\frac{1}{2} \times \frac{4}{7} + \frac{1}{2} \times \frac{6}{10} = \frac{41}{70}$

Q.4

(B)

Ways to make the sum K is coefficient of x^{K} in $(x + x^{2})^{10}$ Coefficient of x^{K} in $x^{10}(1+x)^{10}$ Coefficient of x^{K-10} in $(1+x)^{10}$ Which is ${}^{10}C_{K-10}$ So ways to make sum minimum K is ${}^{10}C_{K-10} + {}^{10}C_{K-9} + {}^{10}C_{K-8} + \dots + {}^{10}C_{10}$ Probability $P(K) = \frac{{}^{10}C_{K-10} + {}^{10}C_{K-9} + \dots + {}^{10}C_{10}}{2^{10}}$

$$P(K) = \frac{2^{10} - ({}^{10}C_0 + \dots + {}^{10}C_{K-11})}{2^{10}}$$

$$=1 - \frac{{}^{10}C_0 + \dots + {}^{10}C_{K-11}}{2^{10}} > \frac{1}{2}$$

But K should be maximum so ${}^{10}C_{K-11} = {}^{10}C_5$ (middle value) So that ${}^{10}C_0 + \dots + {}^{10}C_{K-11}$ is max So K = 16

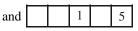
Q.5 (C)

$$\frac{{}^{100} \mathrm{C}_{5}[1 \times 2(3)]}{{}^{100} \mathrm{C}_{5} \times 5!}$$

Suppose 1, 2, 3, 4, are selected coupons.

$$=\frac{1}{20}$$

place of 1 is fixed Total arrangements of 5 is 2



arrangements of 2, 3, 4 are

Q.6

Let x = 1favourable out comes (1, 1), (1, 2)(1, n) no. of favourable out comes when x = 1

$$= \left\lfloor \frac{n}{1} \right\rfloor$$

(D)

 \therefore no. of favorable out comes when x = 1 or y = 1 = 2

$$\left[\frac{\mathbf{n}}{1}\right]^{-1}$$

 \therefore no. of favourable out comes when x = 2 or y = 2 but

$$x \neq 1, y \neq 1 = 2\left[\frac{n}{1}\right] - 1$$

Similarly

no. of favourable out comes when x = k or y = k but x, $y \not\in \{1, 2, \dots, k-1\}$

$$2\left[\frac{n}{k}\right]-1$$

So probability

$$= \frac{\sum_{k=1}^{n} \left[\frac{n}{k}\right] - (1+1....n \text{ times})}{n^2} = \frac{2}{n^2} \sum_{k=1}^{n} \left[\frac{n}{k}\right] - \frac{1}{n}$$

Q.7 (B)

$$P = \frac{6}{6} \cdot \frac{5}{6} + \frac{6}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{5}{6} + \frac{6}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{5} \cdot \frac{5}{6} + \dots \infty$$

$$= \frac{5}{6} + \frac{5}{6^3} + \frac{5}{6^5} + \dots$$

$$= \frac{5/6}{1 - \frac{1}{36}} = \frac{30}{35} = \frac{6}{7}$$

(D)
(D)

 $B_{1} \dots B_{6}.$ [Required probability $D_{1} \text{ never}$ Shows'1' $D_{2} \text{ Shows '1' (one time)}$ Then $D_{1} \text{ shows '1'}$ $\left(\frac{5}{6}\right)^{n}$ $\left\{{}^{n}C_{1}\left(\frac{5}{6}\right)^{n-1}\left(\frac{1}{6}\right)\right\}\left\{\frac{1}{6}\right\}$ $(5)^{n}$ $(5)^{n}$ $(5)^{n-1}(1)$

Required probability =
$$\left(\frac{5}{6}\right)^n + n\left(\frac{5^{n-1}}{6^{n-1}}\right)\left(\frac{1}{6^2}\right)$$

Q.10 (C)

$$\frac{\underline{|4|}}{\underline{|(2)^2|2}} \times \frac{\underline{|6|}}{\underline{|(2)^3|3}} \times \underline{|6|} = 32400$$

Q.11

(C)

Digits are 1, 2, 3, 4, 5 Even digits = 2, 4; number of Even digits =2 Total marks = 2375; number of Odd digits = 3 Sum of any 2 adjacent digits is odd \Rightarrow Odd and even digits will alternate **Case I** For n; Repetition is not allowed \Rightarrow OEOEO is the only possibility of arrangement of digits, where O = Odd digit, E = Even digit. So number of Arrangements

$$n = \frac{3}{O} \times \frac{2}{E} \times \frac{2}{O} \times \frac{1}{E} \times \frac{1}{O} = 12$$

Case I For m; Repetition is allowed ⇒ Two possipilities (a) OEOEO Number of such arrangements

$$= \frac{3}{O} \times \frac{2}{E} \times \frac{3}{O} \times \frac{2}{E} \times \frac{3}{O} = 108$$

(b)EOEOE

Number of such arrangements

$$= \frac{2}{E} \times \frac{3}{O} \times \frac{2}{E} \times \frac{3}{O} \times \frac{2}{E} = 72$$

So m = 108 + 72 = 180

$$\frac{m}{n} = \frac{180}{12} = 15$$

Q.12 (A)

$$P(b_2) = P(b_1) \cdot P\left(\frac{b_2}{b_1}\right) + P(R_1) \cdot P\left(\frac{b_2}{R_1}\right)$$
$$= \frac{b}{b+r} \cdot \frac{b+1}{b+r+1} + \frac{r}{b+r} \cdot \frac{b}{b+r+1} = \frac{b}{b+r}$$

Q.13 (D)

3rd time target will hit in sixth time

Q.8

Q.9

So, In first 5 attempt these will be 3L, 2W and at 6^{th} attempt shot will be hit

So,
$${}^{5}C_{3}\left(\frac{3}{4}\right)^{3} \times \left(\frac{1}{4}\right)^{2} \times \left(\frac{1}{4}\right) = \frac{270}{4096} = 0.06591$$

Q.14 (A)

 $p_1 = 1 - (no \text{ die show six})$

$$1 - \left(\left(\frac{5}{6}\right)^6\right) = 0.6651$$

 $p_2 = 1 - (no \text{ die show two} + one \text{ die shown two})$

$$p_{2} = 1 - \left[\left(\frac{5}{6}\right)^{12} + {}^{12}C_{1} \left(\frac{5}{6}\right)^{11} \left(\frac{1}{6}\right)^{1} \right] = 0.61866$$
$$p_{1} > p_{2}$$

Q.15 (B)

Case (1): all tail
$$\left(\frac{1}{2}\right)^{5}$$

Case (2): 4T, 1H ${}^{5}C_{4}\left(\frac{1}{2}\right)^{4} \cdot \left(\frac{1}{2}\right)^{5} = \frac{5}{2^{5}}$
Case (3):×T×T×T× $\left(\frac{1}{2}\right)^{3} \times {}^{4}C_{2}\left(\frac{1}{2}\right)^{2} = \frac{1}{2^{5}} \times 6 = \frac{6}{2^{5}}$
Case (4):×T×T×
 $\left(\frac{1}{2}\right)^{2} \times \left(\frac{1}{2}\right)^{3} = \frac{1}{2^{5}}$
Overall $\frac{13}{2^{5}}$

$$\frac{(1) + (3)}{(1) + (3) + (5) + (7)}$$

= $\frac{\frac{3}{5} \times \frac{1}{2} \times \frac{4}{5} + \frac{3}{5} \times \frac{1}{2} \times \frac{1}{5}}{\frac{3}{5} \times \frac{1}{2} \times \frac{4}{5} \times \frac{3}{5} \times \frac{1}{2} \times \frac{1}{5} + \frac{2}{5} \times \frac{1}{5} \times \frac{4}{5} + \frac{2}{5} \times \frac{4}{5} \times \frac{1}{5}$

$$= \frac{\frac{3}{10}}{\frac{3}{10} + \frac{16}{125}} = \frac{75}{107}$$

Q.17 (A)

$$A = []_{3\times 3}$$

$$A^{2} = -1$$

$$|A|^{2} = -1 \text{ (Not possible)}$$

$$A \rightarrow \text{diagonal matrix}$$

$$\begin{bmatrix} 2001 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} 2001$$

$$P = \frac{(2001)^{3}}{(2001)^{9}} = \frac{1}{(2001)^{6}}$$

$$P = (1 + 2000)^{-6}$$

$$= (2000^{-6}) \left(1 + \frac{1}{2001}\right)^{-1} \text{ less then } \bot$$

$$= \frac{1}{2^{6} \times 10^{18}} (\downarrow)$$

$$P < \frac{1}{10^{18}}$$

Q.18 (A)

$$=\frac{1}{2} \times \frac{2}{5} \times \frac{1}{4} \times \frac{1}{5} = \frac{1}{100}$$

Case-II =
$$\frac{1}{100}$$
 similarly

$$p = \frac{1}{100} + \frac{1}{100} = 2\%$$

Q.19 (A)

For equal roots $b^2 = 16c \Rightarrow b = 4\sqrt{c}$ (as b > 0). Hence c should be a perfect square

so probability
$$=\frac{10}{100 \times 100} = 0.001$$

Q.20 (C) All even digit numbers in $B = \{2, 4, 6, 8\}$ fav : forming a 4 digit nos with all digit is even and not divisible by 4 2222, 6666, 2266,

> $\frac{4!}{2!2!} = 6$ cases (2226),(2666) $\frac{4!}{3!} = 4$ cases $\frac{4!}{3!} = 4$ cases Total = 1 + 1 + 6 + 4 + 4 = 16 cases Total : forming a 4-digit no. from $\{1, 2, \dots, 9\}$ but not divisible by 4 C-1 all 4 digit are add = $5^4 = 625$ C-2 all 4 digit are even = 16C-3 one even & 3 odd you can not take 2 or 6 as one of even digit (12, 16, 32, 36, ...) all are divisible by 4 But you can take 4 or 8 as one of even digit ${}^{2}C_{1} \times {}^{4}C_{1} \times 5^{3} = 1000$ Take one even digit out of 4 & 8 select one place for 4 & 8 out of 4-places Total = 1000 + 625 + 16 = 1641

$$P = \frac{fav}{total} = \frac{16}{1641}$$

JEE-MAIN

Q.1

PREVIOUS YEAR'S

(1) a, b, c $\hat{I} \in \{1, 2, 3, 4, 5, 6\}$ n(s) = 6 × 6 × 6 = 216 D = 0 \Rightarrow b² = 4ac

ac =
$$\frac{b^2}{4}$$
 If b = 2, ac = 1 ⇒ a = 1, c = 1
If b = 4, ac = 4 ⇒ a = 1, c = 4
a = 4, c = 1
a = 2, c = 2
If b = 6, ac = 9 ⇒ a = 3, c = 3
∴ probability = $\frac{5}{216}$

Q.2 [0.125]

$$Prob. = \left(\frac{2}{3} \cdot \frac{3}{4}\right)^3 = \frac{1}{8}$$

Q.3 (1)

$$n(A) = 7..... + \underbrace{\cdots}_{7}$$

= 1 × 9 × 9 × 9 + 8 × ³C₁ × 1 × 9 × 9
= 729 + 1944 = 2673

Favourable :7 + $\underbrace{\cdots}_{7 \text{ exavtly once}} 2$ $= 8 \times 9 \times 9 + 1 \times 9 \times 9 \times 1 + 2 \times 8 \times 1 \times 9$ = 648 + 81 + 144= 873 :. Probability = $\frac{873}{2973} = \frac{97}{297}$ [0.5957] Nonveg + smoker $\frac{160}{400} \xrightarrow{\text{disease}} \frac{160}{400} \times \frac{35}{100}$ Veg + smoker $\frac{140}{400} \xrightarrow{\text{disease}} \frac{140}{400} \times \frac{20}{100}$ Veg + smoker $\frac{100}{400} \xrightarrow{\text{disease}} \frac{100}{400} \times \frac{10}{100}$ Required probability = 160×35 400×100 140×20 100×10 160×35 $400 \times 100^{+}$ $\overline{400 \times 100}$ 400×100

$$= \frac{16 \times 35}{16 \times 35 + 14 \times 20 + 100} = \frac{560}{940} = \frac{56}{94} = \frac{28}{47}$$
$$= 0.5957$$

Q.5 (4)
Required probability
$$= \frac{{}^{5}C_{2} \times 3^{3}}{4^{5}}$$

$$= \frac{10 \times 27}{2^{10}} = \frac{135}{2^{9}}$$

Q.6

(1)

Q.4

$${}^{n}C_{9} \times \left(\frac{1}{2}\right)^{9} \times \left(\frac{1}{2}\right)^{n-9} = {}^{n}C_{7} \times \left(\frac{1}{2}\right)^{7} \times \left(\frac{1}{2}\right)^{n-7}$$
$${}^{n}C_{9} = {}^{n}C_{7} \Longrightarrow n = 16$$
$$P(2\text{Heads}) = {}^{16}C_{2} \left(\frac{1}{2}\right)^{2} \times \left(\frac{1}{2}\right)^{14}$$
$$= {}^{16}C_{2} \times \left(\frac{1}{2}\right)^{16}$$

Q.7 (2)

$$n(S) = \frac{7!}{2!3!2!}$$

$$n(E) = \frac{6!}{2!2!2!}$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{6!}{7!} \times \frac{2!3!2!}{2!2!2!}$$

$$= \frac{1}{7} \times 3 = \frac{3}{7}$$

Q.8 [6]

Let x, y, z be probability of B₁, B₂, B₃ respectively $\Rightarrow x(1-y)(1-z) = \alpha \Rightarrow y(1-x)(1-z) = \beta$ $\Rightarrow z(1-x)(1-y) = \gamma \Rightarrow (1-x)(1-y)(1-z) = P$ Putting in the given relation we get x = 2y and y = 3z

$$\Rightarrow x = 6z \Rightarrow x = 6z \Rightarrow \frac{x}{2} = 6$$

Q.9

(3)

P(odd no. twice) = P(even no. thrice)

$$\Rightarrow {}^{n}C_{2}\left(\frac{1}{2}\right)^{n} = {}^{n}C_{3}\left(\frac{1}{2}\right)^{n} \Rightarrow n = 5$$

success is getting an odd number then P(odd successes) = P(1) + P(3) + P(5)

$$= {}^{5}C_{1}\left(\frac{1}{2}\right)^{5} + {}^{5}C_{3}\left(\frac{1}{2}\right)^{5} + {}^{5}C_{5}\left(\frac{1}{2}\right)^{5}$$
$$= \frac{16}{2^{5}} = \frac{1}{2}$$

Q.10

(3)

 E_1 :Event denotes spade is missing

$$P(E_1) = \frac{1}{4}; P(\overline{E}_1) = \frac{3}{4}$$

A : Event drawn two cards are spade

$$P(A) = \frac{\frac{1}{4} \times \left(\frac{{}^{12}C_2}{{}^{51}C_2}\right) + \frac{3}{4} \times \left(\frac{{}^{13}C_2}{{}^{51}C_2}\right) + \frac{3}{4} \times \left(\frac{{}^{13}C_2}{{}^{51}C_2}\right)}{\frac{1}{4} \times \left(\frac{{}^{12}C_2}{{}^{51}C_2}\right) + \frac{3}{4} \times \left(\frac{{}^{13}C_2}{{}^{51}C_2}\right)}$$
20

$$=\frac{39}{50}$$

Q.11 (2)

Total cases : $6 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2$ $n(s) = 6 \cdot 6!$ Favourable cases : Number divisible by $3 \equiv$ Sum of digits must be divisible by 3 **Case-I** 1, 2, 3, 4, 5, 6 Number of ways = 6! **Case-II** 0, 1, 2, 4, 5, 6 Number of ways = 5.5! **Case-III** 0, 1, 2, 3, 4, 5 Number of ways = 5.5! n(favourable) = 6! + 2.5.5! P $\frac{6!+2.5.5!}{6.6!} = \frac{4}{9}$

n(E) = 5 + 4 + 4 + 3 + 1 = 17
So, P (E) =
$$\frac{17}{36}$$

Q.13 [6]

Let
$$P(E_1) = P_1$$
; $P(E_2) = P_2$; $P(E_3) = P_3$
 $P(E_1 \cap \overline{E}_2 \cap \overline{E}_3) = \alpha = P_1(1 - P_2)(1 - P_3)$ (1)
 $P(\overline{E}_1 \cap E_2 \cap \overline{E}_3) = \beta = (1 - P_1)P_2(1 - P_3)$ (2)
 $P(\overline{E}_1 \cap \overline{E}_2 \cap E_3) = \gamma = (1 - P_1)(1 - P_2)P_3$ (3)
 $P(\overline{E}_1 \cap \overline{E}_2 \cap \overline{E}_3) = P = (1 - P_1)(1 - P_2)(1 - P_3)$ (4)
Given that, $(\alpha - 2\beta) P = \alpha\beta$
 $\Rightarrow (P_1 (1 - P_2) (1 - P_3) - 2 (1 - P_1) P_2 (1 - P_3))$
 $P = P_1P_2$
 $(1 - P_1) (1 - P_2) (1 - P_3)_2$
 $\Rightarrow (P_1 (1 - P_2) - 2(1 - P_1) P_2) = P_1P_2$
 $\Rightarrow (P_1 - P_1P_2 - 2P_2 + 2P_1P_2) = P_1P_2$
 $\Rightarrow P_1 = 2P_2$ (1)
and similarly, $(\beta - 3\gamma)P = 2 B\gamma$
 $P_2 = 3P_3$ (2)
So, $P_1 = 6P_3 \Rightarrow \boxed{\frac{P_1}{P_3} = 6}$

Q.14 (4)

$$\frac{1}{\text{odd place even place}} \begin{array}{c} 0 & 0 & 1\\ \text{odd place even place} & \text{odd place even place} \end{array}$$
or
$$\frac{1}{\text{even place odd place}} \begin{array}{c} 0 & 1\\ \text{even place odd place} \end{array}$$

$$\Rightarrow \left(\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{2}{3}\right) + \left(\frac{2}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{2}\right)$$

$$\Rightarrow \frac{1}{9}$$

	7
Q.15	$P(X = 1) = {}^{5}C_{1} \cdot p.q^{4}4 = 0.4096$ $P(X = 2) = {}^{5}C_{2} \cdot p^{2} \cdot q^{3} = 0.2048$ $\Rightarrow \frac{q}{2p} = 2$ $\Rightarrow q = 4p \text{ and } p + q = 1$ $\Rightarrow p = \frac{1}{5} \text{ and } q = \frac{4}{5}$ Now
	$P(X = 3) = {}^{5}C_{3} \cdot \left(\frac{1}{5}\right)^{3} \cdot \left(\frac{4}{5}\right)^{2} = \frac{10 \times 16}{125 \times 25} = \frac{32}{625}$
Q.16	(1)
Q.17	(2)
Q.18	[4]
Q.19	(3)
Q.20	(1)
Q.21	(2)
Q.22	(2)
Q.23	(2)
Q.24	(2) Total ways of choosing square = ${}^{64}C_2$
	$= \frac{64 \times 63}{2 \times 1} = 32 \times 63$ ways of choosing two squares having common side = 2 (7 × 8) = 112
	Required probability $=$ $\frac{112}{32 \times 63} = \frac{16}{32 \times 9} = \frac{1}{18}$.
	Ans. (2) $32 \times 63^{-3} 32 \times 9^{-18}$
Q.25	
Q.26	
	[28]
Q.28	(4)
Q.29	(4)
Q.30	(3)
Q.31	(2)
Q.32 126	[61]

JEE-ADVANCED PREVIOUS YEAR'S

Comprehension #1 (Q. No. 1 & 2)

Q.1 (B)

$$P(white) = P(H \cap white) + P(T \cap white)$$

$$\frac{1}{2} \left\{ \frac{3}{5} \times 1 + \frac{2}{5} \frac{1}{2} \right\} + \frac{1}{2} \left\{ \frac{{}^{3}C_{2}}{{}^{5}C_{2}} \times 1 + \frac{{}^{2}C_{2}}{{}^{5}C_{2}} \times \frac{1}{3} + \frac{{}^{3}C_{1} \cdot {}^{2}C_{1}}{{}^{5}C_{2}} \times \frac{2}{3} \right\}$$
$$= \frac{1}{2} \times \frac{8}{10} + \frac{1}{2} \times \left\{ \frac{3}{10} + \frac{1}{30} + \frac{12}{30} \right\} = \frac{4}{10} + \frac{1}{2} \times \frac{22}{30} = \frac{23}{30}$$

Q.3

$$P\left(\frac{\text{Head}}{\text{White}}\right) = \frac{P(\text{Head} \cap \text{white})}{P(\text{white})}$$
$$= \frac{\frac{1}{2} \times \left\{\frac{3}{5} \times 1 + \frac{2}{5} \times \frac{1}{2}\right\}}{\frac{23}{30}} = \frac{\frac{4}{10}}{\frac{23}{30}} = \frac{12}{23}$$

(A, D)

$$P(E \cap F) = P(E) \cdot P(F) \qquad \dots (1)$$

$$P(E \cap \overline{F}) + P(\overline{E} \cap F) = \frac{11}{25} \dots (2)$$

$$\mathsf{P}(\overline{\mathsf{E}} \cap \overline{\mathsf{F}}) = \frac{2}{25} \qquad \dots (3)$$

by (2)

 $P(F) + P(E) - 2P(E \cap F) = \frac{11}{25} \dots (4)$ by (3) $1 - [P(E) + P(F) - P(E \cap F)] = \frac{2}{25}$ $[P(E) + P(F) - P(E \cap F)] = \frac{23}{25} \dots (5)$ by (4) & (5) P(E) P(F) = $\frac{12}{25} \dots (6)$ and P(E) + P(F) = $\frac{7}{5} \dots (7)$ By (6) and (7) P(E) = $\frac{4}{5}$, P(F) = $\frac{3}{5}$

or $P(E) = \frac{3}{5}$, $P(F) = \frac{4}{5}$

$$P(x_1) = \frac{1}{2}; P(x_2) = \frac{1}{4}; \qquad P(x_3) = \frac{1}{4}$$
$$P(x) = P(E_1 E_2 E_3) + P(\overline{E}_1 E_2 E_3) + P(E_1 \overline{E}_2 E_3) + P(E_1 \overline{E}_3 E_3) + P(E_$$

$$P(E_{1} E_{2} \overline{E}_{3}) =$$

$$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}$$

$$P(x) = \frac{1}{4} \implies (A) P\left(\frac{x_{1}^{c}}{x}\right) = \frac{P(x_{1}^{c} \cap x)}{P(x)} =$$

$$\frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}}{\frac{1}{4}} = \frac{1}{8}$$

(B) $P(\text{exactly two}/x) = \frac{P(\text{exactly two} \cap x)}{P(x)} =$ $\frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}}{\frac{1}{4}} = \frac{7}{8}$ (C) $P(x/x_2) = \frac{P(x \cap x_2)}{P(x_2)}$

$$=\frac{\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{3}{4}}{\frac{1}{4}}=\frac{5}{8}$$

(D)
$$P(x/x_1) = \frac{P(x \cap x_1)}{P(x_1)} =$$

$$\frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}}{\frac{1}{2}} = \frac{7}{16}$$

(A)

Favourable : D_4 shows a number and only 1 of $D_1D_2D_3$ shows same number or only 2 of $D_1D_2D_3$ shows same number or all 3 of $D_1D_2D_3$ shows same number

Required Probability =

$$\frac{{}^{6}C_{1}({}^{3}C_{1} \times 5 \times 5 + {}^{3}C_{2} \times 5 + {}^{3}C_{3})}{216 \times 6} = \frac{6 \times (75 + 15 + 1)}{216 \times 6} = \frac{6 \times 91}{216 \times 6} = \frac{91}{216}$$

Q.6 (AB)

$$P(X/Y) = \frac{1}{2}$$

$$\Rightarrow \frac{P(X \cap Y)}{P(Y)} = \frac{1}{2}$$

$$\Rightarrow P(Y) = \frac{1}{3}$$

$$\Rightarrow P(Y/X) = \frac{1}{3}$$

$$\Rightarrow \frac{P(X \cap Y)}{P(X)} = \frac{1}{3} \Rightarrow P(X) = \frac{1}{2}$$

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y) = \frac{2}{3}$$
A is correct
$$P(X \cap Y) = P(X) \cdot P(Y) \Rightarrow X \text{ and } Y \text{ are independent}$$
B is correct
$$P(X^{c} \cap Y) = P(Y) - P(X \cap Y)$$

$$= \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$$

D is not correct

Q.7 (A)

P (problem solved by at least one) = 1 - P(problem is not solved by by all)

$$= 1 - P(\overline{A}) P(\overline{B}) P(\overline{C}) P(\overline{D}) = 1 - \frac{1}{2} \left(\frac{1}{4}\right) \left(\frac{3}{4}\right) \left(\frac{7}{8}\right) = 1 - \frac{21}{256} = \frac{235}{256}$$

Q.8 [6]

Let x, y, z be probability of E_1, E_2, E_3 respectively $\Rightarrow x(1-y)(1-z) = \alpha \Rightarrow y(1-x)(1-z) = \beta$ $\Rightarrow z(1-x)(1-y) = \gamma \Rightarrow (1-x)(1-y)(1-z)$ = PPutting in the given relation we get x = 2y and y = 3z

$$\Rightarrow x = 6z \qquad \Rightarrow \frac{x}{z} = 6$$

$Comprehension \, \# \, 2 \, (Q. \, No. \, 9 \, \& \, 10 \,)$

$$\begin{vmatrix} 1 & W \\ 3 & R \\ 2 & B \\ \hline Bag & 1 \\ \hline Bag & 2 \\ \hline Bag & 1 \\ \hline Bag & 2 \\ \hline Bag & 3 \\ \hline Bag & 2 \\ \hline Bag & 3 \\ \hline$$

$$= \frac{\mathsf{P}(\mathsf{A} \cap \mathsf{B})}{\mathsf{P}(\mathsf{B})}$$

$$= \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{3} \times \frac{2 \times 3}{{}^{9}C_{2}}}{\frac{1}{3} \left[\frac{1 \times 3}{{}^{6}C_{2}} + \frac{2 \times 3}{{}^{9}C_{2}} + \frac{3 \times 4}{{}^{12}C_{2}}\right]}$$

$$=\frac{\frac{2\times3\times2}{9\times8}}{\frac{3\times2}{6\times5}+\frac{2\times6\times2}{9\times8}+\frac{3\times4\times2}{12\times11}}$$

$$=\frac{\frac{1}{6}}{\frac{1}{5}+\frac{1}{6}+\frac{2}{11}}=\frac{\frac{1}{6}}{\frac{66+55+60}{55\times 60}}=\frac{55}{181}$$

Q.11 (A)

3 Boys & 2 Girls..... (1) B (2) B (3) B (4)

Girl can't occupy 4^{th} position. Either girls can occupy 2 of 1, 2, 3 position or they can both be a position (1) or (2).

Hence total number of ways in which girls can be seated is ${}^{3}C_{2} \times 2! \times 3! + {}^{2}C_{1} \times 2! \times 3! = 36 + 24 = 60$. Number of ways in which 3 B & 2 A can be seated = 5 !

Hence required prob. = $\frac{60}{5!} = \frac{1}{2}$.

Comprehension #3 (Q. No. 12 & 13)

(B) $x_1 + x_2 + x_3$ is odd if all three are odd or 2 are even & one is odd

$$\frac{2}{3} \times \frac{3}{5} \times \frac{4}{7} + \frac{2}{3} \times \frac{2}{5} \times \frac{3}{7} + \frac{1}{3} \times \frac{3}{5} \times \frac{3}{7} + \frac{1}{3} \times \frac{2}{5} \times \frac{4}{7}$$
$$= \frac{24 + 12 + 9 + 8}{105} = \frac{53}{105}$$

Q.12

 $2x_2 = x_1 + x_3$. If $x_1 \& x_3$ both are odd $2 \times 4 = 8$ ways $x_1 \& x_3$ both are even $1 \times 3 = 3$ ways Total = 11 ways

Total
$$(x_1 x_2 x_3)$$
 triplets are $3 \times 5 \times 7 \implies P = \frac{11}{105}$

Q.14 [8]

Let coin is tossed n times P(atleast two heads) = 1 -

$$\left(\frac{1}{2}\right)^{n} - {}^{n}C_{2} \cdot \left(\frac{1}{2}\right)^{n} \ge 0.96$$
$$\Rightarrow \frac{4}{100} \ge \frac{n+1}{2^{n}}$$
$$\Rightarrow \frac{n+1}{2^{n}} \le \frac{1}{25}$$
$$\Rightarrow \frac{2^{n}}{n+1} \ge 25$$
$$\Rightarrow \text{ least value of n is 8.}$$

Comprehension # 4 (Q. No. 15 & 16)

$$Box - I < \frac{\text{Red} \to n_1}{\text{Black} \to n_2}$$

$$Box - II < \frac{Red \rightarrow n_3}{Black \rightarrow n_4}$$

$$P(R) = \frac{1}{2} \cdot \frac{n_1}{n_1 + n_2} + \frac{1}{2} \cdot \frac{n_3}{n_3 + n_4}$$

$$R(II/R) = \frac{\frac{1}{2} \cdot \frac{n_3}{n_3 + n_4}}{\frac{1}{2} \cdot \frac{n_1}{n_1 + n_2} + \frac{1}{2} \cdot \frac{n_3}{n_3 + n_4}}$$

$$=\frac{\frac{n_{3}}{n_{3}+n_{4}}}{\frac{n_{1}}{n_{1}+n_{2}}+\frac{n_{3}}{n_{3}+n_{4}}}$$

by option $n_1 = 3$, $n_2 = 3$, $n_3 = 5$, $n_4 = 15$

$$P(II/R) = \frac{\frac{5}{20}}{\frac{3}{6} + \frac{5}{20}} = \frac{n_4}{\frac{1}{2} + \frac{1}{4}} = \frac{1}{4} \times \frac{4}{2+1} = \frac{1}{3}$$

$$\frac{n_1}{n_1 + n_2} \cdot \frac{n_1 - 1}{n_1 + n_2 - 1} + \frac{n_2}{n_1 + n_2} \cdot \frac{n_1}{n_1 + n_2 - 1} = \frac{1}{3}$$

$$3(n_1^2 - n_1 + n_1 n_2) = (n_1 + n_2)(n_1 + n_2 - 1)$$

$$3n_1(n_1 + n_2 - 1) = n_1 + n_2(n_1 + n_2 - 1)$$

$$2n_1 = n_2$$

Q.17 (C)

$$P(T_1) = \frac{20}{100}, \quad P(T_2) = \frac{80}{100}$$
$$P(D) = P(T_1)P(D/T_1) + P(T_2)P(D/T_2)$$

$$\Rightarrow \frac{7}{100} = \frac{20}{100}x + \frac{80}{100}y$$
$$\Rightarrow 20x + 80y = 7$$
Also $x = 10y$
$$\Rightarrow y = \frac{1}{40} \& x = \frac{1}{4}$$

Hence, Require probability = $\frac{80 \times 39}{20 \times 30 + 80 \times 39} = \frac{78}{93}$

Comprehension # 5 (Q. No. 18 & 19) (B)

Q.18 (B) P(X > Y) = P(WW, WD, DW) = P(WW) + P(WD) + P(DW) $= \frac{1}{2} \times \frac{1}{2} + \frac{1}{6} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{6} = \frac{5}{12}$ Q.19 (C) $P(X = Y) = P(WL) + P(DD) + P(LW) = \frac{1}{2} \times \frac{1}{3} + \frac{1}{6} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{2} = \frac{13}{36}$

Q.20 (A,B)

$$\frac{P(X \cap Y)}{P(Y)} = \frac{1}{2}$$
$$\frac{P(X \cap Y)}{P(X)} = \frac{2}{5}$$

$$P(X \cap Y) \frac{P(Y)}{2} = \frac{2}{5}P(X) = \frac{2}{5} \cdot \frac{1}{3} = \frac{2}{15}$$
$$\Rightarrow P(Y) = \frac{4}{15}$$
$$\frac{P(\overline{X} \cap Y)}{P(Y)} \frac{P(Y) - P(X \cap Y)}{P(Y)} = \frac{\frac{4}{15} - \frac{2}{15}}{\frac{4}{15}} = \frac{2}{4} = \frac{1}{2}$$
$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

$$=\frac{1}{3}+\frac{4}{15}-\frac{2}{15}=\frac{7}{15}$$

Q.21 (C)

Q.22

x + y + z = 10Total number of non-negative solutions = ${}^{10+3-1}C_{3-1}$ = ${}^{12}C_2 = 66$ Now Let z = 2n. x + y + 2n = 10; n ≥ 0 Total number of non-negative solutions = 11 + 9 + 7 + 5+ 3 + 1 = 36

Required probability $=\frac{36}{66}=\frac{6}{11}$

Comprehension # 6 (Q. No. 22 & 23) (A)

Required probability =
$$\frac{4!\left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!}\right)}{5!} = \frac{9}{120} = \frac{3}{40}$$

Q.23 (C) $n(T_1 \cap T_2 \cap T_3 \cap T_4) = Total - n(\overline{T}_1 \cup \overline{T}_2 \cup \overline{T}_3 \cup \overline{T}_4)$ $=5!-({}^{4}C_{1}4!2!-({}^{3}C_{1}.3!2!+{}^{3}C_{1}3!2!2!)+({}^{2}C_{1}2!2!+{}^{4}C_{1}.2.2!)-2)$ = 14Probability $=\frac{14}{5!}=\frac{7}{60}$ Q.24 [422.00] $P\left(\frac{B}{A}\right) = P(B)$ $\Rightarrow \frac{n(A \cap B)}{n(A)} = \frac{n(B)}{n(s)}$(1) \Rightarrow n(A) should have 2 or 3 as prime factors \Rightarrow n(A) can be 2, 3, 4 or 6 as n (A) > 1 n(A) = 2does not satisfy the constraint (1). for n(A) = 3. n(B) = 2 and $n \land A \cap B = 1$ \Rightarrow No. of ordered pair = ${}^{6}C_{4} \times \frac{4!}{2!} = 180$ for n(A) = 4. n(B) = 3 and $n(A \cap B) = 2$ \Rightarrow No. of ordered pairs = ${}^{6}C_{5} \times \frac{5!}{2!2!} = 180$ for n(A) = 6. n(B) can be 1,2,3,45. \Rightarrow No. of ordered pairs = $2^6 - 2 = 62$ Total ordered pair = 180 + 180 + 62 = 422.

Probability

Q.25 [0.50] $n(E_2) = {}^{9}C_2$ (as exactly two cyphers are there) Now, det A = 0, when two cyphers are in the same column or same row $\Rightarrow n(E_1 \cap E_2) = 6 \times {}^{3}C_2$. Hence, $P\left(\frac{E_1}{E_2}\right) = \frac{n(E_1 \cap E_2)}{n(E_2)} = \frac{18}{36} = \frac{1}{2} = 0.50$

Q.26 (B,C)

Ball	Balls composition	$P(B_i)$
B ₁	5R + 5G	3
		10
B ₂	3R + 5G	3
		10
B ₃	5R + 3G	4
		10

(1)
$$P(B_3 \cap G) = P\left(\frac{G_1}{B_3}\right)P(B_3) = \frac{3}{8} \times \frac{4}{10} = \frac{3}{20}$$

(2) $P(G) = P\left(\frac{G_1}{B_1}\right)P(B_1) + P\left(\frac{G}{B_2}\right)P(B_2) + P\left(\frac{G}{B_3}\right)P(B_3)$
 $= \frac{3}{20} + \frac{3}{16} + \frac{3}{20} = \frac{39}{80}$
(3) $P\left(\frac{G}{B_3}\right) = \frac{3}{8}$
(4) $P\left(\frac{B_3}{G}\right) = \frac{P(G \cap B_3)}{P(G)} = \frac{3/20}{39/80} = \frac{4}{13}$

Q.27 (B)

$$P(H) = \frac{2}{3} \text{ for } C_1$$
$$P(H) = \frac{1}{3} \text{ for } C_2$$

For C₁

No. of Heads (α)	0	1	2
Probability	1/9	4/9	4/9
for C ₂			
No. of Heads (β)	0	1	2
Probability	4/9	4/9	1/9

(
$$\alpha$$
, β) = (0, 0), (2, 1)
So, probability = $\frac{1}{9} \times \frac{1}{4} + \frac{4}{9} \times \frac{4}{9} = \frac{20}{81}$

Q.28 [6]

Let P(r) = probability of r successes =
$${}^{n}C_{r}\left(\frac{3}{4}\right)^{r}\left(\frac{1}{4}\right)^{n-r}$$

 $1-(P(0)+P(1)+P(2)) \ge 0.95$
 $\Rightarrow 1-{}^{n}C_{0}\left(\frac{1}{4}\right)^{n} -{}^{n}C_{1}\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)^{n-1} -{}^{n}C_{2}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{n-2} \ge 0.95$
 $\Rightarrow 9n^{2}-3n+2\le 0.05 \times 4^{n} \times 2\le \frac{4^{n}}{10}$
for $n=5$ $212\le 102.4$ (Not true)
for $n=6$ $308\le 409.6$ true
 \therefore least value of $n=6$
Q.29 [8.00]
Prime: 2, 3, 5, 7, 11
 $1 \ 2 \ 4 \ 6 \ 2$
P(Prime) = $\frac{15}{36}$
Perfect square 4, 9 P(perfect square) = $\frac{7}{36}$
 $\frac{3}{4} + \frac{14}{36} \times \frac{4}{36} + \left(\frac{14}{36}\right)^{2} \frac{4}{36} + \dots$
 $\frac{7}{36} + \frac{14}{36} \times \frac{7}{36} + \left(\frac{14}{36}\right)^{2} \frac{7}{36} + \dots$
 $P = \frac{4}{7}$
 $\therefore 14P = 14, \frac{4}{7} = 8$
Q.30 (A)
 $P = \frac{P(B_{1,2}) + P(B_{1,3}) + P(B_{2,3})$
 $\frac{\mu^{1/2}}{\mu(E_{1} = E_{3})} = \frac{P(B_{1,2})}{P(B)}$

 $P(B_{1,2}) = \frac{1}{3} \times \frac{1 \times {}^{3}C_{1}}{{}^{4}C_{2}}$

1

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} & -1 \\ \hline 4 \\ \hline C_2 \\ 1 \\ \text{ is definitely} \\ \text{ chosen from } F_2 \end{array} \times \begin{array}{c} \hline 5 \\ \hline 5 \\ \hline 1, 2 \\ \text{ chosen} \\ \text{ from } G_2 \end{array}$

130

$$P(B_{1,3}) = \frac{1}{3} \times \frac{1 \times {}^{2}C_{1}}{{}^{3}C_{2}} \times \frac{1}{{}^{5}C_{2}}$$

$$\prod_{\substack{i \text{ sdefinitely} \\ chosen \text{ from } F_{2}}} \times \frac{1}{{}^{5}C_{2}}$$

$$P(B_{2,3}) = \frac{1}{3} \times \left[\underbrace{\frac{{}^{3}C_{2} \times 1}{{}^{4}C_{2}}}_{\substack{1 \text{ is not chosem} \\ \text{from } F_{2}}} \times \frac{1}{{}^{4}C_{2}} + \underbrace{\frac{1 \times {}^{3}C_{1}}{{}^{4}C_{2}} \times \frac{1}{{}^{5}C_{2}}}_{\substack{\text{If 1 is chosen} \\ \text{from } F_{2}}} \right]$$

$$\frac{P(B_{1,2})}{P(B)} = \frac{1}{5}$$

Q.31 [76.25]

 p_1 = probability that maximum of chosen numbers is at least 81

 $p_1 = 1 - probability$ that maximum of chosen number is at most 80

$$p_{1} = 1 - \frac{80 \times 80 \times 80}{100 \times 100 \times 100} = 1 - \frac{64}{125}$$
$$p_{1} = \frac{61}{125}$$

$$\frac{625p_1}{4} = \frac{625}{4} \times \frac{61}{125} = \frac{305}{4} = 76.25$$

the value of
$$\frac{625p_1}{4}$$
 is 76.25

Q.32 [24.50]

 $\mathbf{p}_2 = \mathbf{probability}$ that minimum of chosen numbers is at most 40

= 1 - probability that minimum of chosen number is at lest 41

$$=1-\left(\frac{600}{100}\right)^{3}$$

$$=1 - \frac{27}{125} = \frac{98}{125}$$

$$\therefore \frac{125}{4} \mathbf{p}_2 = \frac{125}{4} \times \frac{98}{125} = 24.50$$

Q.33 [214]

A=set of numbers divisible by 3 A={3, 6, 9, 12,1998} ∴ n(A)=666 B=set of numbers divisible by 7 B={7, 14, 21, 1995} ∴ n(B)=285 A ∩ B = {21, 42, 1995} ∴ n(A ∪ B) = 606 + 285 - 95 = 856

required probability
$$=\frac{856}{2000} = P$$

so, 500 $P = \frac{856}{2000} \times 500 = 214$

Q.34 (A,B,C)

$$P(E) = \frac{1}{8}; P(F) = \frac{1}{6}; P(G) = \frac{1}{4}; P(E \cap F \cap G) = \frac{1}{10}$$

(C) $P(E \cup F \cup G)$
= $P(E) + P(F) + P(G) - P(E \cap F) - P(F \cap G) - P(G \cap E) + P(E \cap F \cap G)$

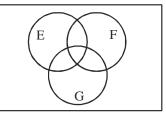
$$=\frac{1}{8}+\frac{1}{6}+\frac{1}{4}-\sum P(E\cap F)+\frac{1}{10}$$

$$=\frac{3+4+6}{24}+\frac{1}{10}-\sum P(E\cap F)=\frac{13}{24}+\frac{1}{10}-\sum P(E\cap F)$$

$$\Rightarrow P(E \cup F \cup G) \le \frac{13}{24} [(C) \text{ is Correct}]$$

(D)
$$P(E^{c} \cap F^{c} \cap G^{c}) = 1 - P(E \cup F \cup G) \ge 1 - \frac{13}{24}$$

$$\Rightarrow P(E^{c} \cap F^{c} \cap G^{c}) \ge \frac{11}{24} [(D) \text{ is Incorrect}]$$



(A)
$$P(E) = \frac{1}{8} \ge P(E \cap F \cap G^{C}) + P(E \cap F \cap G)$$

 $\Rightarrow \frac{1}{8} \ge P(E \cap F \cap G^{C}) + \frac{1}{10} \Rightarrow \frac{1}{8} - \frac{1}{10} \ge P(E \cap F \cap G^{c})$
 $\Rightarrow \frac{1}{40} \ge P(E \cap F \cap G^{C}) [(A) \text{ is correct}]$
(B) $P(E) = \frac{1}{6} \ge P(E^{C} \cap F \cap G) + P(E \cap F \cap G)$
 $\Rightarrow \frac{1}{6} - \frac{1}{10} P(E^{C} \cap F \cap G)$
 $\Rightarrow \frac{4}{60} \ge P(E^{C} \cap F \cap G)$
 $\Rightarrow \frac{1}{15} \ge P(E^{C} \cap F \cap G) [(B) \text{ is Correct}]$